Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EffiLayers gets organic photovoltaics rolling

19.12.2019

Sunny prospects: Under the direction of the Fraunhofer Institute for Laser Technology ILT in Aachen, five project partners from industry and research are developing technologies for the roll-to-roll production of organic photovoltaics in the EffiLayers project. This North Rhine-Westphalian lead market project aims to help the machine manufacturers based in North Rhine-Westphalia play a pioneering role in the market for flexible thin-film solar cells and printed electronics.

It is about organic photovoltaic cells (OPV cells), which are less efficient than traditional silicon-based solar cells, but are flexible and transparent. These last two advantages allow OPV cells to be functionally and decoratively integrated, for example, into building facades. By developing an efficient production process, the partners intend to boost the industrial mass production of OPV cells.


In EffiLayers, the project partners are continuing to develop the laser-based roll-to-roll production of organic photovoltaics developed in the predecessor project PhotonFlex.

© Fraunhofer ILT, Aachen, Germany


In the EffiLayers research project, a high-resolution line scan camera is used to control the laser scribing with eleven laser beams in the process.

© Fraunhofer ILT, Aachen, Germany

Wafer-thin innovations for flexible power generation

Since the individual layers of the OPV cells are only a few nanometers thick, the technology only requires small amounts of material to coat large areas of flexible substrates. This way, producers save on resources.

The roll-to-roll process also makes it possible to manufacture on an industrial scale. Compared to classical silicon photovoltaic production, this process has lower manufacturing costs because energy-intensive and costly process steps are no longer necessary.

In the predecessor projects FlexLas and PhotonFlex, the partners focused on individual steps of the complex roll-to-roll production process for OPV cells.

In September 2019, the EffiLayers research project was launched with the aim of implementing and integrating innovative analysis and process technologies into the production process. Individual process steps are monitored by high-resolution sensors and implemented in a process control system.

A few grams of raw material and a lot of laser technology in one process

“We would like to implement the process in a manner oriented to the industry”, explains Ludwig Pongratz, a researcher at Fraunhofer ILT. “Our approach is to replace expensive, energy-intensive sputtering processes with wet-chemical coating processes”, says Pongratz.

The functional layers are applied on top of each other via wet-chemical solutions by means of heated slot-die coating. The 10 to 250 nm thick layers are processed with various laser sources from the short pulse and ultrashort pulse range.

In the continuous process, the laser drying and laser thin film ablation are used to separate individual cells as well as to remove layers in the edge area. The OPV cells are then sealed by laser encapsulation with a barrier film to protect them from environmental factors.

Pongratz explains: “To produce OPV cells having an area of ten square meters, we only need three grams of organic active material. Because we were able to successfully implement many innovative process steps into our plant in the first two projects, the funding of a third project was approved with funds from the European Regional Development Fund (ERDF)”.

Laser scribing – a complex process in the ultra-short pulse range

In the EffiLayers research project, an ultrashort pulse (USP) laser in the femtosecond regime plays an important role. It separates the individual layers so that individual cells are connected in series. “With laser scribing, we guide eleven partial beams onto the surface while the film moves”, explains Pongratz.

“The laser beams selectively separate the composite layers so that, at the end, twelve serially connected subcells are produced on a single film. The challenge is to selectively ablate the individual nanometer-thick layers without damaging the underlying layers or causing short circuits”.

Integration between industry and research

In order to map the entire process, Fraunhofer ILT is cooperating with the Chair of Applied Laser Technologies (LAT) at the Ruhr-Universität Bochum. Both research institutes are working closely with the plant manufacturer Coatema Coating Machinery GmbH from Dormagen, the communication experts of Ortmann Digitaltechnik GmbH from Attendorn and LIMO GmbH from Dortmund, the latter of which provides the optical components for the eleven partial beams.

In the meantime, development in the field of organic materials has also reached new standards. These novel materials are incorporated into EffiLayers project in order to achieve a significant increase in solar cell efficiency and to make OPV cells usable for indoor applications as well. Pongratz: “For us it is important to map the process in an integrated manner and to develop the necessary process monitoring and control along with our partners”.

Wissenschaftliche Ansprechpartner:

Ludwig Pongratz M. Sc.
Group Micro and Nano Structuring
Telephone +49 241 8906-8044
ludwig.pongratz@ilt.fraunhofer.de

Dipl.-Phys. Martin Reininghaus
Group Leader Micro and Nano Structuring
Telephone +49 241 8906-627
martin.reininghaus@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Power and Electrical Engineering:

nachricht New graphene-based metasurface capable of independent amplitude and phase control of light
20.02.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht A step towards controlling spin-dependent petahertz electronics by material defects
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>