Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust Removal Makes Steel Production More Efficient

25.02.2013
A new dedusting technique for crude steel production operations improves energy recovery and the recycling of dust from blast furnace exhaust gases.

The newly developed Simetal Merim process from Siemens boasts an energy recovery level 20-30 percent higher than that achieved by conventional dedusting plants.



A Simetal Merim dedusting plant is now being installed for use with a new blast furnace at a facility operated by Turkish steel producer Kardemir. The Merim (Maximized Emission Reduction and energy recovery in IronMaking) process does not require water or sludge processing facilities, which frees up space and lowers the required investment. The new dedusting plant in Turkey is scheduled to go into operation in the second half of 2013.

The blast furnace process for manufacturing crude steel creates a very dusty exhaust gas (blast furnace gas), which can be used for energy recovery by having it drive a turbine. All dust must be removed from the gas beforehand, however; otherwise the turbine blades will be damaged. Furnace dust consists mainly of fine and coarse ore particles that can be recycled after being separated.

Wet-type dedusting techniques that produce wastewater and sludge as byproducts have commonly been used up until now. Another possibility is to employ dry-type dedusting units. Their dust filters are very temperature-sensitive, however, which is why the technique is not utilized very extensively.

The newly developed Merim dry-type dedusting method enables optimal purification of the exhaust gas prior to the energy recovery process, as well as efficient separation of the dust into useful and non-useful components. With the help of a two-stage dry-type dedusting process that includes an innovative centrifugal separator and fabric filters, the Merim system improves the energy recovery performance of furnace gas turbines by 20-30 percent.

Siemens' patented Advanced Temperature Control System solves the problem of fabric filter temperature sensitivity by continually maintaining a furnace gas temperature of between 80 and 250 degrees Celsius. This ensures the fabric filters are not damaged by excessively high temperatures, and that no deposits can build up through condensation at low temperatures. To this end, the blast furnace gas is either cooled by injecting water or heated using a burner.

Merim lowers the dust content in blast furnace gas to less than three milligrams per standard cubic meter and achieves a useful dust component separation efficiency of up to 90 percent. The plant in Kardemir is designed to be able to clean a maximum of 400,000 standard cubic meters of blast furnace gas per hour.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht New creepy, crawly search and rescue robot developed at Ben-Gurion U
19.07.2018 | American Associates, Ben-Gurion University of the Negev

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>