Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Droplet response to electric voltage in solids exposed

24.10.2012
For the first time, scientists have observed how droplets within solids deform and burst under high electric voltages.

This is important, the Duke University engineers who made the observations said, because it explains a major reason why such materials as insulation for electrical power lines eventually fail and cause blackouts.


This shows the deformation of a droplet as the voltage increases.

Credit: Xuanhe Zhao

This observation not only helps scientists develop better insulation materials, but could also lead to such positive developments as "tunable" lenses for eyes.

As the voltage increases, water droplets, or air bubbles, within polymers slowly change from their spherical shape to a more tubular shape, causing extremely large deformation within the material. Over time, this can lead to cracking and failure of the polymer, the researchers said. Polymers are a class of "soft" materials that can be found almost everywhere, most commonly as an insulator for electrical wires, cables and capacitors. Droplets or bubbles can be trapped in these polymers as defects during fabrication.

"The effects of electric voltage on droplets in air or in liquid have been studied over decades,' said Xuanhe Zhao, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering. "We take advantage of the understanding of these electrified drops in air or liquid every day, such as in the use of ink-jet printers.

"Conversely, no one has actually observed the effects of electric voltages on droplets in solids," Zhao said.

The results of Zhao's experiments were published online Oct. 23, 2012, in the journal Nature Communications. His work is supported by and the National Science Foundation's Research Triangle Materials Research Science and Engineering Center, National Science Foundation's Materials and Surface Engineering program and National Institutes of Health.

In air or liquid, droplets subjected to increased voltage tend to transform into a cone shape that eventually emits tiny droplets from the pointed end of the cone. This is the basic phenomenon that is taken advantage of in inkjet printers and similar technologies.

"Changes in electrified drops in solids have not been well studied, because it has been very difficult to observe the process as the solid would usually break down before droplet transformation could be captured," Zhao said. "This limitation has not only hampered our understanding of electrified droplets, but has hindered the development of high-energy-density polymer capacitors and other devices."

This knowledge becomes especially important, Zhao said, as scientists are developing new polymers designed to carry higher and higher loads of electricity.

Zhao's experiments involved droplets, or bubbles, encapsulated within different types of polymers. Using a special technique developed by Zhao group, the team observed and explained how increased voltage caused the droplet to form a sharp "tip" before evolving into the tubular shape.

"Our study suggests a new mechanism of failure of high-energy-density dielectric polymers," Zhao said. "This should help in the development of such applications as new capacitors for power grids or electric vehicles and muscle-like transducers for soft robots and energy harvesting."

The experiments also showed how polymers "deformed," or changed shapes, at different voltages before they failed.

"It appears that it could be possible, just by varying voltages, to change the shape of a particular polymer," Zhao said. "One of the new areas we are now looking into is creating lenses that can be custom-shaped and used in ophthalmic settings."

Other members of the team were Qiming Wang, Zhao's graduate student, and Zhigang Suo, Harvard University.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>