Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dream screens from graphene

02.08.2011
Rice University develops indium-free transparent, flexible electrodes
Flexible, transparent electronics are closer to reality with the creation of graphene-based electrodes at Rice University.

The lab of Rice chemist James Tour lab has created thin films that could revolutionize touch-screen displays, solar panels and LED lighting. The research was reported in the online edition of ACS Nano.

Flexible, see-through video screens may be the "killer app" that finally puts graphene -- the highly touted single-atom-thick form of carbon -- into the commercial spotlight once and for all, Tour said. Combined with other flexible, transparent electronic components being developed at Rice and elsewhere, the breakthrough could lead to computers that wrap around the wrist and solar cells that wrap around just about anything.

The lab's hybrid graphene film is a strong candidate to replace indium tin oxide (ITO), a commercial product widely used as a transparent, conductive coating. It's the essential element in virtually all flat-panel displays, including touch screens on smart phones and iPads, and is part of organic light-emitting diodes (OLEDs) and solar cells.

ITO works well in all of these applications, but has several disadvantages. The element indium is increasingly rare and expensive. It's also brittle, which heightens the risk of a screen cracking when a smart phone is dropped and further rules ITO out as the basis for flexible displays.

The Tour Lab's thin film combines a single-layer sheet of highly conductive graphene with a fine grid of metal nanowire. The researchers claim the material easily outperforms ITO and other competing materials, with better transparency and lower resistance to electric current.

"Many people are working on ITO replacements, especially as it relates to flexible substrates," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. "Other labs have looked at using pure graphene. It might work theoretically, but when you put it on a substrate, it doesn't have high enough conductivity at a high enough transparency. It has to be assisted in some way."

Conversely, said postdoctoral researcher Yu Zhu, lead author of the new paper, fine metal meshes show good conductivity, but gaps in the nanowires to keep them transparent make them unsuitable as stand-alone components in conductive electrodes.

But combining the materials works superbly, Zhu said. The metal grid strengthens the graphene, and the graphene fills all the empty spaces between the grid. The researchers found a grid of five-micron nanowires made of inexpensive, lightweight aluminum did not detract from the material's transparency.

"Five-micron grid lines are about a 10th the size of a human hair, and a human hair is hard to see," Tour said.

Tour said metal grids could be easily produced on a flexible substrate via standard techniques, including roll-to-roll and ink-jet printing. Techniques for making large sheets of graphene are also improving rapidly, he said; commercial labs have already developed a roll-to-roll graphene production technique.

"This material is ready to scale right now," he said.

The flexibility is almost a bonus, Zhu said, due to the potential savings of using carbon and aluminum instead of expensive ITO. "Right now, ITO is the only commercial electrode we have, but it's brittle," he said. "Our transparent electrode has better conductivity than ITO and it's flexible. I think flexible electronics will benefit a lot."

In tests, he found the hybrid film's conductivity decreases by 20 to 30 percent with the initial 50 bends, but after that, the material stabilizes. "There were no significant variations up to 500 bending cycles," Zhu said. More rigorous bending test will be left to commercial users, he said.

"I don't know how many times a person would roll up a computer," Tour added. "Maybe 1,000 times? Ten thousand times? It's hard to see how it would wear out in the lifetime you would normally keep a device."

The film also proved environmentally stable. When the research paper was submitted in late 2010, test films had been exposed to the environment in the lab for six months without deterioration. After a year, they remain so.

"Now that we know it works fine on flexible substrates, this brings the efficacy of graphene a step up to its potential utility," Tour said.

Rice graduate students Zhengzong Sun and Zheng Yan and former postdoctoral researcher Zhong Jin are co-authors of the paper.

The Office of Naval Research Graphene MURI program, the Air Force Research Laboratory through the University Technology Corporation, the Air Force Office of Scientific Research and the Lockheed Martin Corp./LANCER IV program supported the research.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nn201696g

View a high-definition video at http://www.youtube.com/watch?v=d-P6_BMsHSw

Download high-resolution photos at

http://www.media.rice.edu/images/media/NEWSRELS/0801_team.jpg
http://www.media.rice.edu/images/media/NEWSRELS/0801_Illustration.jpg
http://www.media.rice.edu/images/media/NEWSRELS/0801_Grid.jpg
CAPTIONS:
(Team)
Yu Zhu, a postdoctoral researcher at Rice University, holds a sample of a transparent electrode that merges graphene and a fine aluminum grid. It could become a key component of flexible displays, solar cells and LED lighting. Clockwise from top right: Rice Professor James Tour, Zhu and graduate students Zheng Yan and Zhengzong Sun, coauthors of a new paper on the research in ACS Nano. (Credit: Jeff Fitlow/Rice University)

(Illustration)

A hybrid material that combines a fine aluminum mesh with a single-atom-thick layer of graphene outperforms materials common to current touch screens and solar cells. The transparent, flexible electrodes were developed in the lab of Rice University chemist James Tour. (Credit: Yu Zhu/Rice University)

(Grid)

An electron microscope image of a hybrid electrode developed at Rice University shows solid connections after 500 bends. The transparent material combines single-atom-thick sheets of graphene and a fine mesh of aluminum nanowire on a flexible substrate. (Credit: Tour Lab/Rice University)

Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>