Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DOE, ORNL Helping Industry Use Less Energy

27.10.2008
Four Oak Ridge National Laboratory technologies to improve energy efficiency in industry have won funding from the Department of Energy’s Industrial Technologies Program.

The projects, ranging from a heat-free heat treatment for industrial steels to less expensive better welds for large oil and gas pipelines, will bring $7.5 million to ORNL and another $3 million to industry partners. ORNL is a partner on a fifth project that will bring $1.5 million to the lab and is worth $4.4 million overall.

Craig Blue, manager of the Industrial Technologies Program for ORNL, noted that the important role the industrial sector plays.

“Industry in the United States accounts for one-fourth of the world’s manufacturing output, employs 14 million people and at 12 percent of the gross domestic product makes the highest contribution to the economy of any sector,” Blue said.

While the U.S. industrial sector supplies over 60 percent of the nation’s exports worth $50 billion/month, the challenge is to reduce the amount of energy – 32 quads, which is about one-third of the total energy consumed in the nation. One quad is equal to 1 quadrillion British thermal units, an amount of energy equal to 170 million barrels of oil.

“Working with industry, we are confident that we can reduce the amount of energy consumed and increase productivity through new technologies,” Blue said.

The following technologies were the winners of DOE Energy Intensive Processes support:

High-magnetic field processing. This is a heat-free heat-treating method that uses magnetic fields to enhance reaction kinetics and shift the phase boundaries targeted by heat treatment. This strategy can eliminate heat treatment steps, saving time and energy and adding a new dimension to materials processing. The project is led by Gail Ludtka of ORNL’s Materials Science and Technology Division. Partners are American Magnetics, Ajax TOCCO, American Safety Razor, Carpenter Technologies and Caterpillar.

Near net shape manufacturing of low-cost titanium powders for industry. This is a technology that consolidates new titanium and titanium alloy powders into net shape components for energy systems such as aerospace components and heat exchangers. The project is led by Bill Peter of the Materials Science and Technology Division. Partners are Ohio State University, LMC, Ametek, Lockheed Martin and Aqua Chem.

Improved heat recovery in biomass-fired boilers. This project is aimed at developing advanced materials and designs to improve efficiency by enabling boilers to be operated at higher temperatures. The maximum operating temperature is often limited by the corrosion rate of superheater tubes. By learning why these tubes degrade when operated above the melting point of the inorganic deposits, which is necessary for the process, researchers hope to identify alloys or coatings that provide improved resistance.

The project is led by Jim Keiser of the Materials Science and Technology Division. Partners include FP Innovations, Sharp Consultants and the University of Tennessee.

Flexible hybrid friction stir joining technology. This project is aimed at transforming friction stir welding, a specialty process that uses up to 80 percent less energy than standard welding, into a mainstream process. Friction stir welding, a solid-state joining process that produces high-quality welds, is now used primarily for aluminum and other low-melting materials. Despite energy and quality advantages, the technology has seen limited use in steel, complex structures and thick sections applications.

Researchers hope to develop new materials for friction stir welding tools, develop hybrid friction stir welding with auxiliary heating to reduce forge load and develop multi-pass multi-layer technology for very thick sections. Ultimately, this will result in a field-deployable system that provides flexibility and affordability for on-site construction. Initial applications will be for large oil and gas pipelines.

Partners are Exxon Mobil Corp., ESAB Group, MegaStir Technologies and Edison Welding Institute.

Eaton Corp. is the lead on the fifth project, prototyping energy-efficient thermo-magnetic and induction hardening for heat treat and net-shape forming applications. The goal is to extend tool lifetime and enable cost-effective energy-efficient implementation of precision forging across a wide range of industries. This can be done by coupling the advanced high magnetic field and induction heating technologies to post-process lower cost material feedstock and to harden the die. Ludtka will be working with Eaton on this project.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | Newswise Science News
Further information:
http://www.ornl.gov/news

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>