Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing Power-Over-Fiber Communications Cable: When Total Isolation Is a Good Thing

06.02.2012
Sometimes total electrical isolation is a good thing — and that’s the idea behind a power-over-fiber (PoF) communications cable being developed by engineers at Sandia National Laboratories.

It’s common to isolate communications between systems or devices by using fiber optic cables, said Steve Sanderson of Sandia’s mobility analysis and technical assessment division. But when power also is required, sending it down a copper wire can at times be a safety issue, and substituting it with battery power may not be suitable or practical, he said.

Power-over-fiber cable

Sanderson, Titus Appel and Walter Wrye, a former Sandia intern, are co-inventors of a hybrid cable design that uses fiber to send and regulate optical power to the communications electronics integral to the cable. A patent is pending on the design.

The developers envision their cable replacing existing copper cables in applications related to safety, such as security, explosives, explosion-proof devices, aviation and medical devices.

“The PoF cable has power limitations,” Sanderson said. “It’s not to be construed as a means to power your house, for example, or handle the high speeds of a computer network.

“But because there are growing needs of low-power sensor/control applications related to safety, having convenient optically generated power available is a tremendous benefit.”

The PoF cable ends resemble a typical copper electrical cable with pin and socket connectors. However, optical interface circuits integrated into the connector housing, called a backshell, provide fiber optic transmission of both data communications and optical power.

To conserve energy, optical power is delivered only on demand, Sanderson said.

“The key issue here is to maintain total electrical isolation from any stray electrical energy and high-voltage electrical surges caused by such things as lightning strikes,” he said.

The first-generation PoF cable just delivers optical power to the cable’s internal electronics for data communication between devices. The researchers now are adding the capability to deliver electrical power externally to a connected low-power device, Sanderson said.

In the cable’s current version, the backshell encapsulates circular stacked circuit boards with LEDs coupled to plastic optical fibers for communications, and a laser diode and miniaturized photovoltaic-type cell coupled to the ends of a single glass fiber to deliver optical power.

In the next version, the team plans to use only glass fibers. “Although plastic fiber requires less preparation time than glass, it takes up more room,” Sanderson said.

The team recently tested a PoF low-energy detonator firing cable with fireset electronics built into the backshell. The optically powered fireset embeds a microcontroller that reports such things as detonator resistance, temperature and charging voltages, and receives command messages to fire the detonator. When it’s idle or powered down, the circuitry is designed to short the detonator input leads to prevent unwanted electrical energy from reaching it.

The researchers are working with next-generation microcontrollers, new packaging layouts and new optical devices to reduce the size. Team members also are developing a rugged, production-ready PoF cable and are working to reduce the backshell’s length, decrease the weight and lower costs.

“One of our ongoing objectives is to reduce the physical size so that it’s more widely used,” said Sanderson.

Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Sue Holmes, sholmes@sandia.gov, (505) 844-6362

Sue Holmes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>