Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting paper with ultrasound

24.09.2015

More precise cut edges, less cutting force and therefore a longer tool life: cutting folded sheets with ultrasound technology makes all this a tangible reality. A joint cooperation project conducted by Fraunhofer IPA and bielomatik GmbH came to this preliminary result. A follow-up project is to verify the suitability of the innovation for industrial applications. Scientists are still on the look-out for companies interested in participating.

Processes for cutting stacked sheets of paper are incredibly advanced in technological terms. Having said that, quality defects are still occurring when cutting bound layers of paper with a cover. Particularly when the cutting edge first plunges into the bound layer very large forces are exerted for a short period on the cutting edge and the paper.

Consequently, if the paper pushes the cutting edge sideways or forwards during cutting, the layers of paper at the bottom are shorter or longer than those at the top. The result is an undercut or an overcut. Conversely, the paper may be deformed by the cutting edge before it penetrates. The sheets on the top are bent downwards and jump forwards after cutting. They are then longer, producing a “mushroom cut”.

In practice, these cutting errors frequently overlap. The use of ultrasonic technologies offers a promising solution with regard to cutting processes for multiple layers of paper. Blades subject to ultrasonic vibrations cut with less force, which is why they are considerably leaner and therefore cause less displacement. In a cooperative project within the framework of the “AiF Arbeitsgemeinschaft industrieller Forschungsvereinigungen ›Otto von Guericke‹ e.V.” Fraunhofer IPA together with bielomatik GmbH from Neuffen has used ultrasonic technology to develop the basis for a continuous cutting process.

Use of ultrasonically-supported cutting

”A detailed analysis of the existing systems for the ultrasonically-supported cutting of various other materials validated the innovation in relation to the paper industry“, says Frank Eicher from the Image and Signal Processing department at Fraunhofer IPA. Existing applications using ultrasonic vibrations are largely used in the area of machining, and here too the main aim is to minimize friction forces and signs of wear and tear. Similar cutting processes can be found primarily in the food industry, albeit only to prevent food residues sticking to the blade. Cutting forces do not play a key role.

Eicher explains: “The underlying principle when cutting with ultrasonically stimulated tools is based on the generation of high-frequency electrical alternating voltages and their conversion to mechanical vibrations through what are known as energy converters that work according to the reciprocal piezoelectric principle.”

Ultrasonic systems for processing are operated in resonant frequency, which requires a very precise balance between the ultrasound generator and the connected vibration system. This consists of an acoustic transducer, also called a converter, and the cutting tool, which is set into resonance vibration by inducing the ultrasound. The highest demands are placed in particular on the vibrational behavior of this so-called cutting sonotrode. With state-ofthe-art control technology tools can nowadays be stimulated with ultrasonic vibrations to vibrate in a controlled and beneficial manner at their resonant frequency.

Initial experimental system

An experimental system was conceived and the vibration system designed for the application was then integrated into it. Slight skewing of the layers of paper stimulated what is known as a shear cut. The project partners also designed the configuration of the system in such a way that cutting was possible with or without ultrasonic support. This simplified the direct comparison of the cutting forces. “By using ultrasound the process forces were reduced by up to 50% during the cutting process, which led to a reduction of the material stress in the cutting area,” Eicher commented.

This means that the strain on the cutting blade or sonotrode is reduced and the product life is extended. In addition, the lower process forces decisively reduce the effort required to secure the item to be cut. This all has a positive impact on the cutting quality and the operating costs. In a next step, the experimental design is to be optimized to create a purely ultrasonic cutting system in order to fully exploit the full ultrasonic potential.

This is precisely what the engineer would like to focus on in the course of another funded project in cooperation with interested companies. Frank Eicher is optimistic when it comes to the potential of the ultrasonic process: “The use of ultrasound to increase edge quality and tool life for cutting of layers of paper is a unique selling point. It can take a company to technology leader in cut edge quality.”

Contact Partner
Frank Eicher | Phone +49 711 970-3543 | frank.eicher@ipa.fraunhofer.de | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

Press and Public Relations
Jörg-Dieter Walz | Phone +49 711 970-1667 | presse@ipa.fraunhofer.de | Fraunhofer Institute for Manufacturing Engineering and Automation IPA | Nobelstrasse 12 | 70569 Stuttgart

Weitere Informationen:

http://www.ipa.fraunhofer.de
http://www.aif.de/innovationsfoerderung/industrielle-gemeinschaftsforschung.html
http://www.ipa.fraunhofer.de/ultraschallunterstuetztes_zuschneiden.html

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Power and Electrical Engineering:

nachricht Meta-surface corrects for chromatic aberrations across all kinds of lenses
21.11.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Photovoltaic Systems adapted to their environment - project Infinity successfuly completed
21.11.2018 | CTR Carinthian Tech Research AG

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>