Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CUNY Energy Institute Battery System Could Reduce Buildings' Electric Bills

09.05.2012
Researchers with City College-based Center Devise Method to Control Dendrite Formation in Safe, Low-Cost Zinc Anode Batteries
The CUNY Energy Institute, which has been developing innovative low-cost batteries that are safe, non-toxic, and reliable with fast discharge rates and high energy densities, announced that it has built an operating prototype zinc anode battery system. The Institute said large-scale commercialization of the battery would start later this year.

Zinc anode batteries offer an environmentally friendlier and less costly alternative to nickel cadmium batteries. In the longer term, they also could replace lead-acid batteries at the lower cost end of the market. However, the challenge of dendrite formation associated with zinc had to be addressed. Dendrites are crystalline structures that cause batteries to short out.

To prevent dendrite build-up, CUNY researchers developed a flow-assisted zinc anode battery with a sophisticated advanced battery management system (BMS) that controls the charge/discharge protocol. To demonstrate the new technology and its applications, which range from peak electricity demand reduction to grid-scale energy storage, they have assembled a 36 kilowatt-hour rechargeable battery system.

The system, housed in the basement of Steinman Hall on The City College of New York campus, consists of 36 individual one kWh nickel-zinc flow-assisted cells strung together and operated by the BMS. In peak electricity demand reduction, batteries charge during low usage periods, i.e. overnight, and discharge during peak-demand periods when surcharges for power usage are very high.

“This is affordable, rechargeable electricity storage made from cheap, non-toxic materials that are inherently safe,” said Dr. Sanjoy Banerjee, director of the CUNY Energy Institute and distinguished professor of engineering in CCNY’s Grove School of Engineering. “The entire Energy Institute has worked on these batteries – stacking electrodes, mounting terminals, connecting to the inverters – and they are going to be a game changer for the electric grid.”

The batteries are designed for more than 5,000 – 10,000 charge cycles and a useful life exceeding ten years. The demonstration system is being expanded currently to 100 kWh, with another 200 kWh to be installed later this year. At that point, it will be capable of meeting more than 30 percent of Steinman Hall’s peak-demand power needs, yielding savings of $6,000 or more per month.

Professor Banerjee sees initial applications for the batteries in industrial facilities and large, commercial properties. The nickel-cadmium (Ni-Cd) batteries that would be initially replaced are used in applications that range from backup power for server farms to very large starter motors. Other large-scale Ni-Cd applications include grid support, like a system in Alaska that deploys a 45 MW Ni-Cd battery array.

The CUNY Energy Institute’s zinc anode battery system can be produced for a cost in the $300 - $500 per kWh range, which for many applications has a three to five-year payback period. The cost is being rapidly reduced and is expected to reach $200 kWh with a year.

To commercialize the batteries, researchers plan to have a company operational by fall 2012 with the goal of breaking even within two years, Professor Banerjee said. The company will probably set up its pilot manufacturing facility in close proximity to City College, he added.
Media Contact
Ellis Simon P | 212-650-6460 E | esimon@ccny.cuny.edu

Ellis Simon | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Power and Electrical Engineering:

nachricht A spreadable interlayer could make solid state batteries more stable
19.05.2020 | Chalmers University of Technology

nachricht A new, highly sensitive chemical sensor uses protein nanowires
14.05.2020 | University of Massachusetts Amherst

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>