Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conveyor technology: Moving large quantities of small goods using muscles made of silicone polymer

27.03.2018

Using artificial-muscle actuators, Stefan Seelecke and his team of engineers at Saarland University have developed a new self-optimizing conveyor technology that adapts itself to the size, weight and desired speed of the materials being conveyed. The technology makes use of silicone polymer-based artificial muscles to transport dry bulk materials of all kinds, from foodstuffs to small metal components. By exploiting the properties of electromechanically active polymers, the Saarbrücken research team has built an actuator that they install at intervals below the conveyor belt.

Rapid contractions of the artificial muscles convey the material on the belt, either by projecting the material forward in a series of tiny bounces or sliding it forward in a series of horizontal shoves. As the muscles also have sensor capabilities, they can recognize the weight of the materials being conveyed.


Prof. Stefan Seelecke (l.) and Steffen Hau will be exhibiting a model of their vibrating conveyor system at Hannover Messe.

Credit: Oliver Dietze

The research team will be exhibiting a model of their vibrating conveyor system at Hannover Messe from April 23rd to April 27th at the Saarland Research and Innovation Stand (Hall 2, Stand B46) and are looking for partners with whom they can develop their technology for practical applications.

Vibratory conveyors are used in factories and manufacturing plants whenever large quantities of small objects – pills, screws, electrical components, gummy bears, and the like – need to be transported from A to B. Conventional vibrating conveyor belts either pitch the goods forward by means of rotary vibrators (electric motors equipped with eccentric rotating masses) or they make use of the inertia of the goods to move the material forwards using horizontal stick-slip (slow advance, quick return) cycles. Up until now, these systems have always vibrated or oscillated in a fixed manner and have not been able to adapt flexibly to the goods being conveyed.

A new adaptable conveyor technology is now being developed by Professor Stefan Seelecke and his research team at the Department of Intelligent Material Systems at Saarland University and at ZeMA (Center for Mechatronics and Automation Technology) in Saarbrücken. Their conveyor system is able to adapt to the size, weight and any special properties of the material being conveyed. It can gently transport fragile materials but can also speed up if materials need to be moved urgently.

The engineers in Saarbrücken are specialists in the field of “artificial muscles”, which they develop from a range of materials for use in technical equipment such as robots or industrial machinery. In this particular case, the researchers have chosen silicone, an elastically deformable polymer that they can get to contract by applying an electrical voltage.

‘We print an electrically conducting layer onto each side of the silicone film. This allows us to apply an electric voltage to the film. When the silicone polymer is prepared in this way, we refer to it as an “electroactive polymer” or, more specifically, as an “dielectric elastomer”,’ explains Professor Seelecke. If the research engineers then alter the applied voltage, the electrostatic attractive forces change accordingly and the film compresses so that it extends upwards.

Three of these silicone ‘muscles’ are combined to make a stack, which is then mounted below a conveyor made of smooth stainless steel. ‘If we apply 1800 volts, the amplitude of the stroke, and thus the distance the goods are pitched forward, is significantly larger than that achievable with the conveyor systems currently available. The frequency and amplitude ranges we can access are also greater. And these components are lightweight, cheap to produce and only require low levels of power,’ says Steffen Hau, the doctoral research student who helped develop the conveyor system.

The engineers are able to control the motion of the silicone muscles very precisely, ranging from high-frequency vibrations to powerful thrusts of high amplitude and high acceleration. As a result, they can create conveyor systems that are able to adapt to the mass and size of the bulk goods that have to be transported. This new type of conveyor can therefore be used to transport very different kinds of goods without the need to reconfigure the conveyor between loads. In fact, the conveyor system is designed to recognize the type of load and make the appropriate adjustments automatically.

The control unit can precisely calculate and program the required motion. ‘We can assign specific deformations in the film to specific changes in the film’s capacitance. By studying the electrical measurement data, we know the extent of mechanical deformation in the polymer film at any moment. This effectively imparts sensor properties to the electroactive polymer actuator. By controlling the voltage, we can carefully control the motion of the actuator,’ explains doctoral research student Paul Motzki, a research assistant in Professor Seelecke’s group.

The research team are using the measurement data to integrate a weighing function into the system that will be able to determine the weight of the goods being conveyed. The goal is to develop a conveyor system that can work autonomously by adjusting its control signal to reflect the nature of the materials being transported.

In 2017, the engineering team from Saarbrücken won a number of awards for their system: At the ‘EuroEAP’ conference in Cartagena, Spain their conveyor system was awarded first prize in the ‘EuroEAP Society Challenge’. Prior to that, the team took second place in the ‘SPIE Challenge’, which was part of the ‘SPIE 2017’ conference in Portland, Orgeon, USA.

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used free of charge. Please read and comply with the conditions of use.

To watch a short film about vibratory conveyors, please visit:
http://www.imsl.uni-saarland.de/forschung/eap/

German version of the Press Release:
https://www.uni-saarland.de/nc/aktuelles/artikel/nr/18798.html

Contact for press enquiries:
Prof. Dr. Stefan Seelecke, Department of Intelligent Material Systems at Saarland University: Tel.: +49 681 302-71341; Email: stefan.seelecke@imsl.uni-saarland.de
Steffen Hau, Tel.: +49 681 -302-71354; Email: steffen.hau@imsl.uni-saarland.de
Paul Motzki, Tel.: +49 681 85787-545; Email: p.motzki@zema.de

The Saarland Research and Innovation Stand is organized by Saarland University’s Contact Centre for Technology Transfer (KWT). KWT is the central point of contact for companies interested in exploring opportunities for cooperation and collaboration with researchers at Saarland University.
http://www.uni-saarland.de/kwt

ZeMA – Center for Mechatronics and Automation Technology in Saarbrücken is a research hub for collaborative projects involving researchers from Saarland University, Saarland University of Applied Sciences (htw saar) and industrial partners. ZeMA is home to a large number of industry-specific development projects that aim to transform research findings into practical industrial applications.
http://www.zema.de/

Claudia Ehrlich | Universität des Saarlandes

Further reports about: ZeMA artificial muscles conveyor systems muscles silicone

More articles from Power and Electrical Engineering:

nachricht New laser opens up large, underused region of the electromagnetic spectrum
14.11.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht NASA sending solar power generator developed at Ben-Gurion U to space station
14.11.2019 | American Associates, Ben-Gurion University of the Negev

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>