Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Converting wind power for storage purposes

21.08.2018

In the first half of 2018, wind farms in Germany fed around 55 billion kWh into the power grid. 7 billion more than in the same period last year. Scientists are working to improve conversion and storage technologies to temporarily store surplus wind power. The current BINE Projektinfo “Energiepark Mainz” (05/2018) presents a promising process by way of the world's largest Power-to-Gas research facility. Electrolytic hydrogen is produced using wind power, and is then stored and fed into the natural gas network. The aim is to test the processes and novel components on an industrial scale.

Power-to-Gas plant at Energiepark Mainz with positive interim results


PEM electrolysers in the megawatt range are being used at Energiepark Mainz for the first time. This process can adapt well to electricity fluctuations.

© Siemens, Erich Malter

Systems based on polymer electrolyte membranes (PEM) are used in the electrolytic production of hydrogen at Energiepark Mainz. In the research phase, systems with peak loads of up to 2 MW were used for the first time. At the beginning of the project, the typical output of PEM electrolysers was around 100 kW.

The advantages of this membrane electrolysis method are that the hydrogen involved is very pure, the process requires little maintenance and it can react well to fluctuations in the power grid. In Mainz, the gas is compressed with ionic compressors, stored and fed into the natural gas network or delivered to hydrogen filling stations and industrial plants.

Hydrogen is a versatile chemical energy storage medium and base material. Up to 10 % hydrogen can be added to natural gas, and it can be used directly in industrial production processes while being easy to store.

The electrolysis plant generates up to 1,000 Nm³ of hydrogen per hour, which is fed into the natural gas network for the Mainz-Ebersheim district. The energy park completed the research phase in 2017 and has started normal commercial operation.

You found all informations about the BINE Projectinfo brochure entitled “Energiepark Mainz” (05/2018)” here:

http://www.bine.info/en/press/press-releases/press/pressemitteilung/windstrom-zu...

About BINE Information Service

Energy research for practical applications

The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology
FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Wissenschaftliche Ansprechpartner:

Uwe Milles - Dorothee Gintars: presse(at)bine.info

Originalpublikation:

The BINE Projektinfo “Energiepark Mainz” (05/2018)
http://www.bine.info/en/publications/projektinfos/publikation/energiepark-mainz/

Rüdiger Mack | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Researchers produce synthetic Hall Effect to achieve one-way radio transmission
13.09.2019 | University of Illinois College of Engineering

nachricht Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly
13.09.2019 | University of Pennsylvania

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>