Conquering deep-water sites – start of EU project enlarges offshore potential for wind energy

Since pioneering activities in this field were so far privately financed, the existing knowledge is fragmented. In the HiPRwind project, cutting edge research centers and top-notch European industrial players collaborate openly.

“For the first time, the HiPRWind project provides comprehensive measurement data on wind turbines with floating structures. Therefore, project partners from companies and research institutes will jointly identify opportunities for cost cuttings to enhance offshore wind energy at deep water sites”, underlines Prof. Dr. Andreas Reuter, Director of project coordinator Fraunhofer IWES.

HiPRwind (read “hyperwind”) is an EU project introducing a new cross-sectoral approach to the development of very large offshore wind turbines. Focused on floating systems, this 5-year pan-European R&D effort will develop and test new solutions for enabling offshore wind technologies at an industrial scale. The project is designed with an “open architecture, shared access” approach in that

the consortium of 19 partners will work together, in a collaborative way, to develop enabling structural and component technology solutions for very large wind power installations in medium to deep waters. Results of general interest will be shared within the broader R&D community working on future wind energy solutions.

A central outcome of HiPRwind is to deliver a fully functional floating wind turbine installation at approximately 1:10th scale of future commercial systems, deployed at real sea conditions. This research & testing facility, a world’s first, will be used to research new solutions and generate field data. The project will address critical issues of offshore wind technology such as the need for extreme reliability, remote maintenance and grid integration with particular emphasis on floating wind turbines, where economic and technical weight and size limitations of wind turbines and support structures can be overcome.

Innovative engineering methods will be applied to selected key development challenges such as rotor blade designs, structural health monitoring systems, reliable power electronics and control systems. Built-in active control features will reduce the dynamic loads on the floater in order to save weight and cost compared to existing designs. HiPRWind will develop and test novel, cost effective approaches to floating offshore wind turbines at a lower 1-MW scale.

In this way, the project will overcome the gap in technology development between small scale tank testing and full scale offshore deployment. Thereby, HiPRwind will significantly reduce the risks and costs of commercialising deep water wind technology. The HiPRwind project will make use of existing test locations which offer a favourable permitting situation and infrastructure such as grid connection and monitoring facilities already in place.

In Work Package (WP) 1, the floating support structure and its moorings system will be designed, whereas WP2 is focused on the construction of the full demonstrator unit, its assembly at port facilities and installation at the offshore test site. WP 3 covers the coordination and operation of the platform related research. Within WP 4 to 7, critical aspects of the floating wind turbine are investigated, such as the structure and its system dynamics, the controller, condition and structural health monitoring systems, and the rotor based on innovative blade designs and features. High reliability power electronics will be designed, assembled and tested in the lab at a multi-MW scale. The R&D results all feed into WP8 which is dedicated to identifying and refining new concepts for very large offshore wind turbines. The project also has dedicated WPs for dissemination and IPR exploitation, addressing also non-specialist and non-technical target groups, as well as project management drawing on both research and industry consortium members.

The full impact of the HiPRwind project will be ensured by the strong and close collaboration of participating best-in-class industrial and R&D players in the maritime and wind energy sector with a strong background on successful industrial development in harsh environments.This joint cross-sectoral approach aims to stimulate market development in floating wind technology. Improving the cost efficiency of offshore wind energy will facilitate exploitation of untapped deep-water wind resources. An ambitious dissemination approach will promote broad awareness and up-take of project results in successive R&D pro- jects.

List of project partners

FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER
ANGEWANDTEN FORSCHUNG E.V / Germany
INGENIERIA Y DISEÑO EUROPEO S.A. / Spain
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET /
Norway
ACCIONA ENERGIA S.A. / Spain
SINTEF ENERGI AS / Norway
TECHNIP FRANCE SAS / France
NATIONAL RENEWABLE ENERGY CENTRE LIMITED / United
Kingdom
ABB SCHWEIZ AG / Switzerland
FUNDACION ROBOTIKER Tecnalia / Spain
WOLFEL BERATENDE INGENIEURE GMBH &CO KG / Germany
Mammoet Europe BV / Netherlands
DR TECHN OLAV OLSEN AS / Norway
BUREAU VERITAS-REGISTRE INTERNATIONAL DE CLASSIFICATION
DE NAVIRES ET D’AERONEFS / France
MICROMEGA DYNAMICS SA / Belgium
UNIVERSITAET SIEGEN / Germany
TWI LIMITED / United Kingdom
1-TECH / Belgium
ACCIONA WINDPOWER / Spain
VICINAY CADENAS SOCIEDAD ANONIMA VICINAY / Spain
Weitere Informationen:
http://www.hiprwind.eu Coming soon
http://www.hyperwind.eu Coming soon
http://www.iwes.fraunhofer.de Project coordinator

Media Contact

Britta Rollert Fraunhofer-Institut

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors