Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cobalt Poor and Rich lixNi1-yCoyO2 Layered Materials For Li-Ion Battery Application

29.04.2015

Researchers from the Institute of Science, University Teknologi MARA Selangor conducted a study into the possibility of using new and cost effective compounds in Li ION battery application.

Layered compounds are being investigated extensively due to their high theoretical specific capacities and relatively good cyclability. The electrochemical performance of a layered cathode material depends, to some extent, on the lattice parameters and structural stability of the crystal framework as well as, to a large extent, on the cation ordering of the compounds.


Copyright : Wikimedia

Lithium cobalt oxide (LiCoO2) is an excellent cathode material but expensive, toxicity and not abundant in nature. Therefore, it is logical to produce materials with less Co content for commercial application.

LiNiO2 has the advantage of being cheaper. However, it is unstable and do not exhibit good electrochemical properties. Substitution of Co with Ni may improve the structural stability of LixNi1-yCoyO2 system and may reduce production cost due to the least of Co content.

Many groups of researchers have attempted to synthesize some stoichiometries of LixNi1-yCoyO2, but their XRD results show the presence of impurities. Other researchers have produced hexagonal structure but with poor cation ordering with high (104) peaks relative to the (003) peak.

In this work, layered LixN1-yCoyO2 (x= 1.0, 1.05, 1.1: y= 0.0, 0.1, ...., 0.5) via a novel self-propagating combustion synthesis and its electrochemical properties are investigated. The most obvious advantage of using this combustion route is the ease of the method and speed of the reaction which is over in a few seconds. The precursors are already in the dry form, and, subsequently, the thermal annealing can be done directly without further drying or precalcination process.

Therefore, the synthesis method has the advantage of producing homogeneous materials with the resulting final products free from impurities, even for the Ni-rich stoichiometries. Simultaneous Thermogravimetric Analysis (STA), X-Ray Diffraction (XRD) , Field Emission Scanning Electron Microscopy (FESEM) and Energy DIspersive X-Ray Spectroscopy were used to characterize all the materials. The characterization of all samples shows pure and single phase layered hexagonal structured materials obtained at 700 degree celcius for 24 h, 48 h and 72 h with a polyhedral like morphology. This means that the Ni-ions have been successfully substituted in the LiCoO2 structure.

It can be clearly observed that all of the fingerprint peaks, namely, (003), (101), (006), (012), (104), (018), and (110) are easily identifiable in all of the XRD patterns. All the diffraction peaks can be indexed with alfa-NaFeO2-type structure based on the hexagonal crystal system with R-3m space group. They are isostructural with LiNiO2 and LiCoO2 phases as compared with the XRD patterns in the ICDD database. The EDX results give atomic percent for each sample and agreeable to calculated synthesized values, from cyclic voltammetry, the maximum voltage can reached up to 5.0 V and minimum voltage is 2.3 V.

The LixNi1-yCoyO2 materilas show good promise as cathode materials. The best performance of cathode materials are LiNi0.5Co0.5O2 with the specific capacity of 158.2 mAh/g, Li1.05Ni0.6Co0.4O2 with the specific capacity of 155.3 mAh/g, Li1.05Ni0.7Co0.3O2 with the specific capacity of 153.9 mAh/g, Li1.05Ni0.7Co0.3O2 with the specific capacity of 148.1 mAh/g, Li1.1Ni0.6Co0.4O2 with the specific capacity of 145.7 mAh/g, LiNi0.7Co0.3O2 with the specific capacity of the 144.4 mAh/g, Li1.1Ni0.7Co0.3O2 and Li1.1Ni0.5Co0.5O2 with the specific capacity of 142.8 mAh/g.

Professor Dr.
CHE NORLIDA BINTI KAMARULZAMAN
Universiti Teknologi MARA, Selangor
Institute of Science
INSTITUTE OF SCIENCE (IOS)
norlyk@salam.uitm.edu.my

Darmarajah Nadarajah | ResearchSEA
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

Further reports about: Li-Ion LiCoO2 UiTM capacity cathode cathode materials materials synthesis voltage

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>