Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleanroom on demand

29.08.2016

“Clean Multipurpose Cover” is the world’s first flexible cleanroom system

The smallest degree of contamination can lead to major quality issues across many industries. Should, for example, any impurities occur on microchips, space probes and lenses, this can lead to defects or faulty end devices.


The “Clean Multipurpose Cover” is the world’s first flexible cleanroom system which protects products against contamination during transportation.

Source: Fraunhofer IPA, Photo: Rainer Bez

To avoid damage, companies tend to outsource the relevant manufacturing and assembly steps for high-quality products to cleanrooms. However, these are expensive, limited in their availability and fail to offer protection against contamination as a result of transportation.

Fraunhofer IPA has now developed the world’s first mobile cleanroom system in the form of its “Clean Multipurpose Cover”. It can be set up flexibly and ensures the sterility of products during transportation.

Particulate impurities and filmic contaminations incur additional costs in many industries. The semi-conductor, food, automotive, air and space exploration technology and pharmaceutical sectors, among others, may be affected by this.

Tanja Meyer, Project Manager at Fraunhofer IPA, explains: “If products become contaminated, they are either rejected or must subsequently be cleaned.” Meyer goes on to clarify that if companies are unable to rely on the cleanliness of their manufacturing environment, retrospective analyses are required. Both are time and cost-intensive.

Companies bypass this problem by manufacturing sensitive products in cleanrooms. However, there are also problems involved in this. Meyer expands: “Not all companies, above all SMEs, have their own cleanroom available. Of course, they can rent one or have the parts cleaned externally, but this is not financially viable over the long term in many cases.”

Furthermore, contamination can still occur during transportation. Static cleanrooms, as they exclusively are these days, cannot protect products outside of their own four walls. With this in mind, scientists at Fraunhofer IPA have already received regular requests from industry to develop a cost-effective, flexible solution.

Companies save energy and maintenance costs

The Stuttgart-based scientists have fulfilled these requirements with their “Clean Multipurpose Cover” solution. The world’s first flexible cleanroom system combines the technical cleanliness standards of a cleanroom with a product which can be set up quickly and simply wherever needed. In being operated “on demand”, the company is not subject to enforced occupancy rates which come with static cleanrooms, thereby making enormous savings in energy and maintenance costs. Another benefit is presented by the swift assembly time of under one hour.

The flexible cleanroom solution can then be used immediately after a short start-up phase. Fraunhofer IPA developed an airflow concept for their system composed of low-TVOC and low abrasion materials with connected filter system.

Meyer explains: “This enables us to guarantee a contamination-free manufacturing environment up to cleanliness class of ISO 3, certified in accordance with DIN ISO 14644-1.” The Clean Multipurpose Cover has a modular structure and can be individually configured as required. It is available in different sizes up to 4m2, with or without a floor. The constructed system can be transported, with a mid-range model weighing no more than 20kg. It is therefore fully functional.

Cleanroom feasibility confirmed in lab tests

In June 2016, scientists at Fraunhofer IPA produced the first prototype. “The tests conducted in the cleanroom laboratories of the Center for Contamination Control affirmed the operational capability of the solution,” Mayer was pleased to confirm. Companies can now order customer-specific models from Fraunhofer IPA.

Our scientists have identified the requirements in exchanges with research and industry partners. Costs are determined on a customer-specific basis, varying according to requirements, size and air purity class. Currently, the Stuttgart-based scientists are working on further developing the system for industry and customer-specific requirements such as chemical and microbiological contaminants.

Press office:
Jörg-Dieter Walz, phone +49 711 970-1667, presse@ipa.fraunhofer.de, Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Nobelstraße 12, 70569 Stuttgart

Technical contact partner:
Frank Bürger, phone +49 711 970-1148, frank.buerger@ipa.fraunhofer.de
Tanja Meyer, phone +49 711 970-1625, tanja.meyer@ipa.fraunhofer.de

Editorial team:
Ramona Hönl, phone +49 711 970-1638, ramona.hoenl@ipa.fraunhofer.de

Weitere Informationen:

http://www.ipa.fraunhofer.de/

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>