Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checking power plant components in a more targeted manner

11.06.2018

In future, conventional power plants based on coal and natural gas will have to work much more flexibly than was previously the case. One reason is that they work in close conjunction with power fed into the electricity grid from renewable energies, which means that the power plants run more often under partial load. This imposes greater stresses on the components and in a different manner than they were originally designed for. The new BINE-Projektinfo brochure entitled "Material loading in flexible power plants" presents a new concept for investigating and evaluating power plants with varying loads.

This enables operators and monitoring institutions to calculate the stability of components in terms of their damage more accurately and without compromising on safety.


The BINE-Projektinfo brochure entitled "Material loading in flexible power plants"

© BINE Informationsdienst

Adjusting inspections to the actual load

Until now, conventional power plants were designed for full-load operation with constant pressure and temperature conditions. However, if in future it is intended that they should only produce the electricity requirement not covered by renewables, this will require a new, flexible mode of operation.

For all components, this means more part loads, more start-up and shut-down cycles, and more extreme and rapid temperature changes. Scientists have therefore studied the loads on thick-walled power plant components under cyclic temperature changes.

They have developed and tested a new method for conducting fracture mechanics-based analyses of the damage tolerance. The findings were also incorporated into a draft guideline for the fracture mechanics-based concept, which is currently in the validation phase.

The results are important for the business calculations made by power plant operators because the more frequent partial load operation causes not only higher maintenance costs but also reduced revenue from electricity sales than under full-load operation. TÜV Nord carried out the research project together with the University of Rostock and Research Centre Jülich.

You found all informations about the BINE Projectinfo brochure entitled "Material loading in flexible power plants" here:

http://www.bine.info/en/press/press-releases/press/pressemitteilung/kraftwerksko...

Uwe Milles/Birgit Schneider
presse(at)bine.info

About BINE Information Service

Energy research for practical applications

The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology
FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.Weitere Informationen:

http://www.bine.info/en - BINE Informationsdienst

Rüdiger Mack | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>