Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CASL, Westinghouse simulate neutron behavior in AP1000® reactor core

19.02.2014
Scientists and engineers developing more accurate approaches to analyzing nuclear power reactors have successfully tested a new suite of computer codes that closely model “neutronics” — the behavior of neutrons in a reactor core.

Technical staff at Westinghouse Electric Company, LLC, supported by the research team at the Consortium for Advanced Simulation of Light Water Reactors (CASL), used the Virtual Environment for Reactor Applications core simulator (VERA-CS) to analyze its AP1000 advanced pressurized water reactor (PWR). The testing focused on modeling the startup conditions of the AP1000 plant design.


CASL is developing and applying new modeling and simulation technology (Virtual Environment for Reactor Applications Core Simulator or VERA-CS) to resolve and predict the detailed neutron distribution of the power-generation reactor core residing in reactor vessels. Image courtesy of Westinghouse.

“In our experience with VERA-CS, we have been impressed by its accuracy in reproducing past reactor startup measurements. These results give us confidence that VERA-CS can be used to anticipate the conditions that will occur during the AP1000 reactor startup operations,” said Bob Oelrich, manager of PWR Core Methods at Westinghouse. “This new modeling capability will allow designers to obtain higher-fidelity power distribution predictions in a reactor core and ultimately further improve reactor performance.”

The AP1000 reactor is an advanced reactor design with enhanced passive safety and improved operational performance that builds on decades of Westinghouse’s experience with PWR design. The first eight units are currently being built in China and the United States, and represent the first Generation III+ reactor to receive Design Certification from the U.S. Nuclear Regulatory Commission.

CASL is a U.S. Department of Energy (DOE) Innovation Hub established at Oak Ridge National Laboratory, a part of DOE’s National Laboratory System. The consortium core partners are a strategic alliance of leaders in nuclear science and engineering from government, industry and academia.

“At CASL, we set out to improve reactor performance with predictive, science-based, simulation technology that harnesses world-class computational power,” said CASL Director Doug Kothe. “Our challenge is to advance research that will allow power uprates and increase fuel burn-up for U.S. nuclear plants. In order to do this, CASL is meeting the need for higher-fidelity, integrated tools.”

During the first generation of nuclear energy, performance and safety margins were held at conservative levels as industry and researchers gained experience with the operation and maintenance of what was then a new and complex technology. Over the past 50 years, nuclear scientists and engineers have gained a deeper understanding of the reactor processes, further characterizing nuclear reactor fuel and structure materials.

By making use of newly available computing resources, CASL’s research aims for a step increase in the improvements in reactor operations that have occurred over the last several decades.

“CASL has been using modern high-performance computing platforms such as ORNL’s Titan, working in concert with the INL Fission computer system, for modeling and simulation at significantly increased levels of detail,” said CASL Chief Computational Scientist John Turner. “However, we also recognized the need to deliver a product that is suitable for industry-sized computing platforms.”

With this recognition, CASL designed the Test Stand project to try out tools such as VERA-CS in industrial applications. CASL partner Westinghouse was selected as the host for the first trial run of the new VERA nuclear reactor core simulator (VERA-CS). Westinghouse chose a real-world application for VERA-CS: the reactor physics-analysis of the AP1000 PWR, which features a core design with several advanced features. Using VERA-CS to study the AP1000 provides information to further improve the characterization of advanced cores compared to traditional modeling approaches.

Westinghouse’s test run on VERA-CS focused on modeling one aspect of reactor physics called “neutronics,” which describes the behavior of neutrons in a reactor core. While neutronics is only one of VERA’s capabilities, the results provided by VERA-CS for the AP1000 PWR enhance Westinghouse’s confidence in their startup predictions and expand the validation of VERA by incorporating the latest trends in PWR core design and operational features.

“VERA-CS exhibited remarkable agreement with plant measurements as well as reference numerical solutions for startup cores, and for these reasons we decided to apply it, successfully, to the AP1000 start-up simulations,” said Westinghouse Fellow Engineer Fausto Franceschini.

The CASL team now is working on extending the suite of simulation capabilities to the entire range of operating conditions for commercial reactors, including full-power operation with fuel depletion and fuel cycle reload.

Further information on the status of VERA-CS development at ORNL’s CASL and its deployment at Westinghouse can be obtained by contacting:

ORNL: CASL Director, Douglas Kothe, kothe@ornl.gov

Westinghouse: Fausto Franceschini, Fellow Engineer, FranceF@westinghouse.com

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov. For more information about CASL, please visit http://www.casl.gov/.

The AP1000 PWR is a trademark or registered trademark of the Westinghouse Electric Company LLC, its affiliates and/or its subsidiaries in the United States of America and may be registered in other countries throughout the world. All rights reserved. Unauthorized use is strictly prohibited. Other names may be trademarks of their respective owners.

Mark Uhran | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>