Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright, Laser-Based Lighting Devices

30.09.2013
New Low-heat, High-efficiency White Lighting Options Described in the Journal "AIP Advances"

As a modern culture, we crave artificial white lights -- the brighter the better, and ideally using less energy than ever before. To meet the ever-escalating demand for more lighting in more places and to improve the bulbs used in sports stadiums, car headlights and street lamps, scientists are scrambling to create better light-emitting diodes (LEDs) -- solid state lighting devices that are more energy efficient than conventional incandescent or fluorescent light sources.


K.Denault/UCSB

Photograph of bright white light (right) achieved using lasers in combination with phosphors next to an image of the phosphor with no illumination.

Just one thing stands in the way: "droop," the term for a scientific problem related to LEDs currently in use. Droop refers to the fact that LED efficiency falls as operating currents rise, making the lights too hot to power in large-scale applications. Many scientists are working on new methods for modifying LEDs and making progress toward cooler, bigger and brighter bulbs.

Now investigators at University of California, Santa Barbara, led by material scientists Kristin A. Denault and Michael Cantore, have devised an alternative means of creating high-power white light by using a different excitation source -- a laser diode in combination with inorganic phosphors, instead of the traditional LEDs.

Their laser-based lighting options are high in efficiency and high in performance metrics, according to their study, which is described in the journal AIP Advances, which is produced by AIP Publishing.

"We found two ways to create high-intensity ‘cool’ white light, explained Denault. "In one we used a blue laser diode and yellow-emitting phosphor powder with a luminous flux of 252 lumens, which is comparable to current high-brightness white LEDs. For our second method, we used a near-ultra-violet laser diode and a combination of red-, green-, and blue-emitting phosphors."

They also achieved a variety of other color temperatures with high color rendition, broadening the range of applications for these new lights, she said.

The article, "Efficient and stable laser-driven white lighting" by Kristin A. Denault, Michael Cantore, Shuji Nakamura, Steven P. DenBaars, and Ram Seshadri appears in the journal AIP Advances. See: http://dx.doi.org/10.1063/1.4813837

ABOUT THE JOURNAL
AIP Advances is a fully open access, online-only, community-led journal. It covers all areas of applied physical science. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See: http://aipadvances.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

Further reports about: AIP LED light source light-emitting diode white light

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>