Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomimetic photodetector 'sees' in color

26.08.2014

Rice lab uses CMOS-compatible aluminum for on-chip color detection

Rice University researchers have created a CMOS-compatible, biomimetic color photodetector that directly responds to red, green and blue light in much the same way the human eye does.


Researchers at Rice University's Laboratory for Nanophotonics have demonstrated a method for designing imaging sensors by integrating light amplifiers and color filters directly into pixels.

Credit: Bob Zheng/Rice University

The new device was created by researchers at Rice's Laboratory for Nanophotonics (LANP) and is described online in a new study in the journal Advanced Materials. It uses an aluminum grating that can be added to silicon photodetectors with the silicon microchip industry's mainstay technology, "complementary metal-oxide semiconductor," or CMOS.

Conventional photodetectors convert light into electrical signals but have no inherent color-sensitivity. To capture color images, photodetector makers must add color filters that can separate a scene into red, green and blue color components. This color filtering is commonly done using off-chip dielectric or dye color filters, which degrade under exposure to sunlight and can also be difficult to align with imaging sensors.

"Today's color filtering mechanisms often involve materials that are not CMOS-compatible, but this new approach has advantages beyond on-chip integration," said LANP Director Naomi Halas, the lead scientist on the study. "It's also more compact and simple and more closely mimics the way living organisms 'see' colors.

Biomimicry was no accident. The color photodetector resulted from a $6 million research program funded by the Office of Naval Research that aimed to mimic cephalopod skin using "metamaterials," compounds that blur the line between material and machine.

Cephalopods like octopus and squid are masters of camouflage, but they are also color-blind. Halas said the "squid skin" research team, which includes marine biologists Roger Hanlon of the Marine Biological Laboratory in Woods Hole, Mass., and Thomas Cronin of the University of Maryland, Baltimore County, suspect that cephalopods may detect color directly through their skin.

Based on that hypothesis, LANP graduate student Bob Zheng, the lead author of the new Advanced Materials study, set out to design a photonic system that could detect colored light.

"Bob has created a biomimetic detector that emulates what we are hypothesizing the squid skin 'sees,'" Halas said. "This is a great example of the serendipity that can occur in the lab. In searching for an answer to a specific research question, Bob has created a device that is far more practical and generally applicable."

Zheng's color photodetector uses a combination of band engineering and plasmonic gratings, comb-like aluminum structures with rows of parallel slits. Using electron-beam evaporation, which is a common technique in CMOS processing, Zheng deposited a thin layer of aluminum onto a silicon photodetector topped with an ultrathin oxide coating.

Color selection is performed by utilizing interference effects between the plasmonic grating and the photodetector's surface. By carefully tuning the oxide thickness and the width and spacing of the slits, Zheng was able to preferentially direct different colors into the silicon photodetector or reflect it back into free space.

The metallic nanostructures use surface plasmons -- waves of electrons that flow like a fluid across metal surfaces. Light of a specific wavelength can excite a plasmon, and LANP researchers often create devices where plasmons interact, sometimes with dramatic effects.

"With plasmonic gratings, not only do you get color tunability, you can also enhance near fields," Zheng said. "The near-field interaction increases the absorption cross section, which means that the grating sort of acts as its own lens. You get this funneling of light into a concentrated area.

"Not only are we using the photodetector as an amplifier, we're also using the plasmonic color filter as a way to increase the amount of light that goes into the detector," he said.

###

Co-authors include Rice graduate student Yumin Wang and Peter Nordlander, professor of physics and astronomy at Rice.

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations on Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

David Ruth | Eurek Alert!
Further information:
http://www.rice.edu

Further reports about: Biomimetic CMOS detector effects photodetector photodetectors skin

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>