Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019

Sensitive synthetic skin enables robots to sense their own bodies and surroundings - a crucial capability if they are to be in close contact with people. Inspired by human skin, a team at the Technical University of Munich (TUM) has developed a system combining artificial skin with control algorithms and used it to create the first autonomous humanoid robot with full-body artificial skin.

The artificial skin developed by Prof. Gordon Cheng and his team consists of hexagonal cells about the size of a two-euro coin (i.e. about one inch in diameter). Each is equipped with a microprocessor and sensors to detect contact, acceleration, proximity and temperature.


Video: Inspired by human skin, a team at the Technical University of Munich (TUM) has developed a system combining artificial skin with control algorithms and used it to create the first autonomous humanoid robot with full-body artificial skin.

Credit: Technical University of Munich

Usage Restrictions: Free for use in reporting on TUM, with the copyright noted


Each cell of this artificial skin developed by researchers at the Technical University of Munich (TUM) is equipped with a microprocessor and sensors to detect contact, acceleration, proximity and temperature. New control algorithms made it possible for the first time to apply artificial skin to a human-sized robot.

Credit: Astrid Eckert / TUM

Usage Restrictions: Free for use in reporting on TUM, with the copyright noted.

Such artificial skin enables robots to perceive their surroundings in much greater detail and with more sensitivity. This not only helps them to move safely. It also makes them safer when operating near people and gives them the ability to anticipate and actively avoid accidents.

The skin cells themselves were developed around 10 years ago by Gordon Cheng, Professor of Cognitive Systems at TUM. But this invention only revealed its full potential when integrated into a sophisticated system as described in the latest issue of the journal Proceedings of the IEEE.

More computing capacity through event-based approach

The biggest obstacle in developing robot skin has always been computing capacity. Human skin has around 5 million receptors. Efforts to implement continuous processing of data from sensors in artificial skin soon run up against limits. Previous systems were quickly overloaded with data from just a few hundred sensors.

To overcome this problem, using a NeuroEngineering approach, Gordon Cheng and his team do not monitor the skin cells continuously, but rather with an event-based system. This reduces the processing effort by up to 90 percent. The trick: The individual cells transmit information from their sensors only when values are changed.

This is similar to the way the human nervous system works. For example, we feel a hat when we first put it on, but we quickly get used to the sensation. There is no need to notice the hat again until the wind blows it off our head. This enables our nervous system to concentrate on new impressions that require a physical response.

Safety even in case of close bodily contact

With the event-based approach, Prof. Cheng and his team have now succeeded in applying artificial skin to a human-size autonomous robot not dependent on any external computation. The H-1 robot is equipped with 1260 cells (with more than 13000 sensors) on its upper body, arms, legs and even the soles of its feet. This gives it a new "bodily sensation". For example, with its sensitive feet, H-1 is able to respond to uneven floor surfaces and even balance on one leg.

With its special skin, the H-1 can even give a person a hug safely. That is less trivial than it sounds: Robots can exert forces that would seriously injure a human being. During a hug, two bodies are touching in many different places. The robot must use this complex information to calculate the right movements and exert the correct contact pressures. "This might not be as important in industrial applications, but in areas such as nursing care, robots must be designed for very close contact with people," explains Gordon Cheng.

Versatile and robust

Gordon Cheng's robot skin system is also highly robust and versatile. Because the skin consists of cells, and not a single piece of material, it remains functional even if some cells stop working. "Our system is designed to work trouble-free and quickly with all kinds of robots," says Gordon Cheng. "Now we're working to create smaller skin cells with the potential to be produced in larger numbers."

###

Publications:

G. Cheng, E. Dean-Leon, F. Bergner, J. Rogelio Guadarrama Olvera, Q. Leboutet and P. Mittendorfer, "A Comprehensive Realization of Robot Skin: Sensors, Sensing, Control, and Applications". Proceedings of the IEEE (2019). DOI: 10.1109/JPROC.2019.2933348

F. Bergner, E. Dean-Leon, J. R. Guadarrama-Olvera and G. Cheng, "Evaluation of a Large Scale Event Driven Robot Skin". IEEE Robotics and Automation Letters (2019). DOI: 10.1109/LRA.2019.2930493

J. R. Guadarrama-Olvera, E. Dean-Leon, F. Bergner and G. Cheng, "Pressure-Driven Body Compliance Using Robot Skin". IEEE Robotics and Automation Letters (2019). DOI: 10.1109/LRA.2019.2928214

Further information:

The H-1 robot was financed by the German Research Foundation (DFG) with funding under a large equipment grant application.

Chair of Cognitive Systems: http://www.ics.ei.tum.de

Professor Gordon Cheng: http://www.professoren.tum.de/en/cheng-gordon/

Video and high-resolution images:

https://youtu.be/M-Y2HW6JcGI https://mediatum.ub.tum.de/1521354

Contact:

Prof. Dr. Gordon Cheng
Technical University of Munich (TUM)
Chair of Cognitive Systems
Tel: +49 (89) 289-25765
borngesser@tum.de

Media Contact

Paul Hellmich
paul.hellmich@tum.de
49-892-892-2731

 @TU_Muenchen

http://www.tum.de 

Paul Hellmich | EurekAlert!
Further information:
https://www.tum.de/nc/en/about-tum/news/press-releases/details/35732/
http://dx.doi.org/10.1109/JPROC.2019.2933348

Further reports about: Automation Cognitive Systems Robotics TUM artificial skin nervous system sensory skin skin cells

More articles from Power and Electrical Engineering:

nachricht Anode material for safe batteries with a long cycle life
06.08.2020 | Karlsruher Institut für Technologie (KIT)

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>