Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018

Scientists at Tokyo Institute of Technology created the first thermally stable organic molecular nanowire devices using a single 4.5-nm-long molecule placed inside electroless gold-plated nanogap electrodes.

The traditional methods and materials used for the fabrication of modern integrated circuits are close to reaching (or have probably already reached) their ultimate physical limitations regarding the size of the final product. In other words, further miniaturization of electronic devices is nearly impossible without delving into other types of materials and technology, such as organic molecular electronic devices. However, this class of devices generally operates properly only at extremely low temperatures because of the thermal fluctuations of both the organic molecules and the metal electrodes.


(a) Molecular structure of the COPV6(SH)2 molecule. (b) Top and cross-sectional views of an ELGP nanogap electrode. (c) Different ways in which the molecule binds with the nanogap. The thermally stable device is obtained when the first type of binding (SAuSH) occurs.

Credit: ACS OMEGA

While special electroless gold-plated nanogap electrodes, called ELGP electrodes, have demonstrated exceptional thermal stability at their gap, new classes of molecular wires have to be developed to address the aforementioned issue. Because of this, a team of scientists, including Professor Yutaka Majima from Tokyo Institute of Technology (Tokyo Tech), focused on a 4.5-nm-long molecule called disulfanyl carbon-bridged oligo-(phenylenevinylene), or COPV6(SH)2 for short.

This molecule, shown in Fig. 1 (a), has a rigid rod-like pi-conjugated system, which is electronically and spatially isolated from its surrounding by four 4-octylphenyl groups. The molecule has two sulfhydryl terminals, which may or may not bind chemically with the opposing gold surfaces of an ELGP nanogap, shown in Fig. 1 (b). Interestingly, the research team found that when the COPV6(SH)2 molecule binds with gold surfaces in a specific way, called SAuSH, as shown in Fig. 1 (c), the resulting device shows the characteristic behavior of coherent resonant electron-tunneling devices, which have an array of potential applications in electronics and nanotechnological fields.

Most importantly, the resulting device was thermally stable, showing similar current vs. voltage curves both at 9 and 300 K. This had not been achieved before using flexible organic molecular wires. However, as shown in Fig. 1 (c), there are multiple ways in which the COPV6(SH)2 molecule can bind at the ELGP nanogap, and the team currently has no way to control the type of device they will get.

Despite that, they measured the electrical characteristics of the devices they obtained in order to explain in detail the underlying quantum mechanisms that determine their behavior. In addition, they verified their findings with theoretically derived values and, by doing this, they further reinforced their knowledge on the operating principle of the SAuSH device and the other possible configurations.

The next challenge is to obtain a better yield of the SAuSH device, because their yield was less than 1 %. The team believes that the rigidity and high molecular weight of the molecule, as well as the stability of ELGP electrodes, would be responsible for the high stability of the resulting device and its low yield. Given the many possible variations of the COPVn class of molecules and the various ELGP nanogap configurations, the yield problem may be resolved via adjustments in the methods and the characteristics of the molecules and gaps used. The data reported in this work will provide a foundation for future molecular-scale electronic research.

Media Contact

Emiko Kawaguchi
media@jim.titech.ac.jp
81-357-342-975

http://www.titech.ac.jp/english/index.html 

Emiko Kawaguchi | EurekAlert!
Further information:
https://www.titech.ac.jp/english/
http://dx.doi.org/10.1021/acsomega.8b00559

More articles from Power and Electrical Engineering:

nachricht Anode material for safe batteries with a long cycle life
06.08.2020 | Karlsruher Institut für Technologie (KIT)

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>