Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative Energy Hits the Road

14.08.2008
Anyone who has walked barefoot across a parking lot on a hot summer day knows that blacktop is exceptionally good at soaking up the sun’s warmth.

Now, a research team at Worcester Polytechnic Institute (WPI) has found a way to use that heat-soaking property for an alternative energy source. Through asphalt, the researchers are developing a solar collector that could turn roads and parking lots into ubiquitous—and inexpensive–sources of electricity and hot water.

The research project, which was undertaken at the request of Michael Hulen, president of Novotech Inc. in Acton, Mass, which holds a patent on the concept of using the heat absorbed by pavements, is being directed by Rajib Mallick, associate professor of civil and environmental engineering. On Monday, Aug. 18, 2008, team member Bao-Liang Chen, a PhD candidate at WPI, will present the results of research aimed at evaluating the potential for transforming stretches of asphalt into a cost-effective energy source at the annual symposium of the International Society for Asphalt Pavements in Zurich, Switzerland. The study looks not only at how well asphalt can collect solar energy, but at the best way to construct roads and parking lots to maximize their heat-absorbing qualities.

“Asphalt has a lot of advantages as a solar collector,” Mallick says. “For one, blacktop stays hot and could continue to generate energy after the sun goes down, unlike traditional solar-electric cells. In addition, there is already a massive acreage of installed roads and parking lots that could be retrofitted for energy generation, so there is no need to find additional land for solar farms. Roads and lots are typically resurfaced every 10 to 12 years and the retrofit could be built into that cycle. Extracting heat from asphalt could cool it, reducing the urban ‘heat island’ effect. Finally, unlike roof-top solar arrays, which some find unattractive, the solar collectors in roads and parking lots would be invisible.”

Mallick and his research team, which also includes Sankha Bhowmick of UMass, Dartmouth, studied the energy-generating potential of asphalt using computer models and by conducting small- and large-scale tests. The tests were conducted on slabs of asphalt in which were imbedded thermocouples, to measure heat penetration, and copper pipes, to gauge how well that heat could be transferred to flowing water. Hot water flowing from an asphalt energy system could be used “as is” for heating buildings or in industrial processes, or could be passed through a thermoelectric generator to produce electricity.

In the lab, small slabs were exposed to halogen lamps, simulating sunlight. Larger slabs were set up outdoors and exposed to more realistic environmental conditions, including direct sunlight and wind. The tests showed that asphalt absorbs a considerable amount of heat and that the highest temperatures are found a few centimeters below the surface. This is where a heat exchanger would be located to extract the maximum amount of energy. Experimenting with various asphalt compositions, they found that the addition of highly conductive aggregates, like quartzite, can significantly increase heat absorption, as can the application of a special paint that reduces reflection.

Finally, Mallick says the team concluded that the key to successfully turning asphalt into an effective energy generator will replacing the copper pipes used in the tests with a specially designed, highly efficient heat exchanger that soaks up the maximum amount of the heat absorbed by asphalt. “Our preliminary results provide a promising proof of concept for what could be a very important future source of renewable, pollution-free energy for our nation. And it has been there all along, right under our feet.”

About Worcester Polytechnic Institute
Founded in 1865 in Worcester, Mass., WPI was one of the nation's first engineering and technology universities. WPI's 18 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, management, the social sciences, and the humanities and arts, leading to the BA, BS, MS, ME, MBA and PhD. WPI's world-class faculty work with students in a number of cutting-edge research areas, leading to breakthroughs and innovations in such fields as biotechnology, fuel cells, and information security, materials processing, and nanotechnology. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Perspective Program. There are more than 20 WPI project centers throughout North America and Central America, Africa, Australia, Asia, and Europe.

Michael Dorsey | EurekAlert!
Further information:
http://www.wpi.edu

More articles from Power and Electrical Engineering:

nachricht Anode material for safe batteries with a long cycle life
06.08.2020 | Karlsruher Institut für Technologie (KIT)

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

Tellurium makes the difference

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>