Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aircraft Tractors Driven from the Cockpit Save Thousands of Tons of Fuel

15.10.2015

A new kind of remotely-controlled towing tractor that contains drive technology from Siemens is an environmentally friendly solution for taking aircraft from the gate to the take-off position.

Until now, airplanes have had to use their own turbines to cover this stretch. However, this is very uneconomical, as taxiing consumes up to one metric ton of fuel, depending on the airplane’s size and the distance covered. It is much more efficient to use a diesel-electric towing tractor that attaches itself to the nose wheel and pulls the airplane to the runway. As a result, an aircraft doesn’t have to turn on its engines until after it arrives at the runway.


TaxiBots are real powerhouses — the narrow-body model has around 500 kilowatts of drive output (approximately 800 hp). The TaxiBot’s driven by electric motors. Siemens supplies the tractors with powertrains. Image: TaxiBot in action at Frankfurt Airport.

After conducting extensive tests, Lufthansa now regularly uses such taxiing robots or TaxiBots at Frankfurt International Airport. According to the airline, the tractors enable it to save around 11,000 metric tons of fuel each year at Frankfurt Airport alone. TaxiBots are the result of a joint project between Siemens, the French TLD Group, Israel Aerospace Industries, and Lufthansa LEOS.

TaxiBots not only cut fuel consumption and emissions, they also reduce the strain on aircraft engines, thus extending their maintenance intervals. In addition, they aren’t as noisy as jet turbines. Current TaxiBots tow narrow-body (i.e. single-aisle) airliners such as the Airbus A320 and the Boeing 737. These tractors create only half as much noise as a taxiing airplane.

Including its own energy consumption, a Narrow-Body TaxiBot can save up to 150 kilograms of fuel on each taxiing mission. Trials with Wide-Body TaxiBots for airliners with two aisles, such as the Airbus A380 and the Boeing 747-400, are scheduled to begin soon at Chateauroux Airport in France. One such TaxiBot can save up to one metric ton of fuel when it tows a wide-body jet, which can weigh up to 600 metric tons.

Tractors Powered by Diesel-Electric Hybrid Drives

TaxiBots are real powerhouses — the narrow-body model has around 500 kilowatts of drive output (approximately 800 hp), while a Wide-Body model generates about 1 megawatt (over 1,350 hp). The TaxiBot’s four wheel pairs — for a Narrow-Bodyvehicle — or six wheel pairs — for a Wide-Bodyvehicle— is driven by electric motors. Every individual wheel of the Wide-Body model has its own drive motor.

Siemens supplies the tractors with powertrains, which consist of generators, electric motors, converters, electronics, and software. Although many of the components are based on those of the ELFA hybrid drive system for buses, they were specially developed or adapted for the needs of TaxiBots, which, among other things, require high torques and short response times.

For safety reasons, the system has a redundant design, which means that two diesel engines drive two generators for electricity production. The converters turn the electricity into a form usable by the electric motors. Depending on the model in question, a tractor can be equipped with either six or 16 converters. Wide-Body TaxiBot systems can even be separated into three pieces in the event of a fault. This ensures that two thirds of the drive system will work. In case of a fault such as a short circuit, the electronics developed by Siemens automatically switch off one third of the drive system.

The wheel module that contains the motors for each wheel pair is also a completely new development. Moreover, Siemens engineers have optimized Wide-Body TaxiBot technology by using permanent-magnet electric motors, which operate even more efficiently than conventional asynchronous machines. What’s more, the motors are completely integrated into the wheel module housings. Another new feature is that a TaxiBot can control the electric motor of each of its wheels separately.

This is an advantage when the vehicle turns in place or travels slowly, for example, because a great deal of force is required to turn the wheels under an airliner’s massive load. To achieve this, the Wide-Body TaxiBot can apply different amounts of force to the two wheels of a pair or drive them in opposite directions.

An important consideration during the development of TaxiBots was that pilots would continue to have sole control over an airplane, as required by law. For example, a tractor would be unable to properly brake a moving airliner weighing hundreds of tons.

When a pilot brakes an airplane via its main landing gear, the TaxiBot responds within 130 milliseconds and brakes as well so that the nose wheel isn’t subject to any strain. A plane’s nose wheel is attached to a TaxiBot by means of a special interface mechanism that registers all of the pilot’s steering and braking maneuvers, which it translates into commands for the tractor’s wheels. The software for controlling the wheels also comes from Siemens.

Norbert Aschenbrenner


Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:
http://www.siemens.com

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>