Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aircraft of the future could capture and re-use some of their own

24.02.2012
Tomorrow's aircraft could contribute to their power needs by harnessing energy from the wheel rotation of their landing gear to generate electricity.

They could use this to power their taxiing to and from airport buildings, reducing the need to use their jet engines. This would save on aviation fuel, cut emissions and reduce noise pollution at airports.

The feasibility of this has been confirmed by a team of engineers from the University of Lincoln with funding from the Engineering and Physical Sciences Research Council (EPSRC). This forms part of the Research Councils UK Energy Programme.

The energy produced by a plane's braking system during landing – currently wasted as heat produced by friction in the aircraft's disc brakes - would be captured and converted into electricity by motor-generators built into the landing gear. The electricity would then be stored and supplied to the in-hub motors in the wheels of the plane when it needed to taxi.

'Engine-less taxiing' could therefore become a reality. ACARE (the Advisory Council for Aeronautics Research in Europe) has made engine-less taxiing one of the key objectives beyond 2020 for the European aviation industry.

"Taxiing is a highly fuel-inefficient part of any trip by plane with emissions and noise pollution caused by jet engines being a huge issue for airports all over the world," says Professor Paul Stewart, who led the research.

"If the next generation of aircraft that emerges over the next 15 to 20 years could incorporate this kind of technology, it would deliver enormous benefits, especially for people living near airports. Currently, commercial aircraft spend a lot of time on the ground with their noisy jet engines running. In the future this technology could significantly reduce the need to do that."

The University of Lincoln's research formed part of a project that aimed to assess the basic feasibility of as many ways of capturing energy from a landing aircraft as possible.

"When an Airbus 320 lands, for example, a combination of its weight and speed gives it around three megawatts peak available power," Professor Stewart explains. "We explored a wide variety of ways of harnessing that energy, such as generating electricity from the interaction between copper coils embedded in the runway and magnets attached to the underside of the aircraft, and then feeding the power produced into the local electricity grid."

Unfortunately, most of the ideas weren't technically feasible or simply wouldn't be cost-effective. But the study showed that capturing energy direct from a plane's landing gear and recycling it for the aircraft's own use really could work, particularly if integrated with new technologies emerging from current research related to the more-electric or all-electric aircraft.

A number of technical challenges would need to be overcome. For example, weight would be a key issue, so a way of minimising the amount of conductors and electronic power converters used in an on-board energy recovery system would need to be identified.

The project was carried out under the auspices of the EPSRC-funded Airport Energy Technologies Network (AETN) established in 2008 to undertake low-carbon research in the field of aviation, and was undertaken in collaboration with researchers at the University of Loughborough.

EPSRC Press Office | EurekAlert!
Further information:
http://www.epsrc.ac.uk

More articles from Power and Electrical Engineering:

nachricht Mobile measuring instruments: Caught in flight
07.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht PCB-embedded GaN-on-Si half bridge circuits for modular use
06.07.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>