Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agrophotovoltaics Goes Global: from Chile to Vietnam

20.06.2018

Agrophotovoltaics (APV), a technology which combines the production of solar electricity and crops on the same land, has already been successfully demonstrated in pilot projects in several European countries. The Fraunhofer Institute for Solar Energy Systems ISE in cooperation with the Innovation Group “APV-Resola” have proven the feasibility of Agrophotovoltaics with a 194 kWp APV pilot system realized on a farm near Lake Constance in Germany. The project results showed that APV increases the land-use efficiency by 60 percent.

“The next step is to establish a proof of concept for the APV system technology in developing and threshold countries. Due to the higher levels of solar radiation in these countries, APV can make better use of its strengths. The potential is enormous,” says Stephan Schindele, project head of Agrophotovoltaics at Fraunhofer ISE, who is now focusing on transferring the technology to other climatic zones as well as other applications.


Each plant (here the one in Lampa) has a power of 13 kilowatts.

© Fraunhofer Chile


Three APV pilot plants (the picture shows the one in Curacaví), fostering the dual land use of photovoltaics and crop growing, are being tested in Chile.

© Fraunhofer Chile

Fraunhofer ISE, together with Fraunhofer Chile, tested three 13 kWp APV systems in the Chilean communities of El Monte, Curacavi and Lampa. The Chilean APV pilot project ended in spring 2018 and was financially supported by the Santiago de Chile Metropolitan Region Government.In the project, investigations were carried out to determine which plants benefit from less radiation exposure, i.e. shading from the APV array. Sensors measured the meteorological data like solar radiation, humidity, soil moisture and ground temperature.

The data was also used to optimize the on-site irrigation system. The operation of the three farms chosen for the project differed greatly: The first APV system was installed on a farm using very professional methods to grow broccoli and cauliflower. The solar electricity was used in the production process to clean, package and cool the produce.

The second APV pilot system was installed on a family-run farm that grows herbs and other crops. The third system was set up in a remote region with a weak infrastructure. Access to the electricity grid is available, but electric service is quite irregular. The APV plant provided electricity for seven families, providing power to an incubator for hatching chicken eggs, among other things.

The three APV systems in Chile are the first of their kind in Latin America. The Fraunhofer Chile supports the scientific parts of the project, and the Fraunhofer Center for Systems Biotechnology CSB analyzes the agricultural aspects. The Fraunhofer Center for Solar Energy Technologies CSET addresses the energy-related and technical questions in close consultation with Fraunhofer ISE.

Investigations involve adapting and optimizing the APV technology according to the specific climatic and economic conditions in Chile. The results of both the crop and solar power production are very positive. As a result, the APV research at Fraunhofer Chile shall be expanded thanks to the support of the local government. The three pilot plants will be monitored for three additional years, operating them as on-field labs.

A long term plan involving different type of crops has been coordinated with the farmers, so it will be possible to test the concept with a large variety of products. “At the beginning of the project, there was a transfer of technology and know-how from Germany to Chile. In the meanwhile, the transfer is taking place at the same level in both directions. Fraunhofer ISE is profiting from the new experiences with APV in Chile and vice versa,” remarks Stephan Schindele.

In the arid and semi-arid regions in Northern and Central Chile, there is great potential for APV, since a large percentage of the people live from agriculture, which is impacted by the increasing amount of dry periods, desertification and water scarcity due to climate change. The projects show that the partial shading of crops planted underneath APV can reduce their need for water and also offer livestock shelter from the sun.

Also, it is expected that various fruits which normally do not grow well in dry climates with high solar radiation would grow underneath an APV system. At the same time, the generated electricity can be used to operate water pumps or desalination systems. In remote regions, the quality of life is increased immensely just with the electric output of a few solar modules providing improved access to information, education and also better medical care.

In sub-Saharan Africa, about 92 percent of the rural population have no access to electricity. APV offers new sources of income to the local population and at the same time reduces the dependence on fossil fuels, needed, for example, for diesel generators. Besides this, solar power can be used for cooling and processing agricultural crops, making them preservable and also more profitable.

Aquaculture: A New Application for APV

In cooperation with the Deutsche Gesellschaft für Internationale Zusammenarbeit GIZ GmbH Vietnam, Fraunhofer ISE carried out a proof-of-concept study analyzing the possibility of installing Agrophotovoltaics at shrimp farms located in the Vietnamese Mekong Delta. In this region, there is an increasing competition for land between aquaculture and renewable energy. The current project SHRIMPS “Solar-Aquaculture Habitats as Resource-Efficient and Integrated Multilayer Production Systems” has the potential to solve a series of systemic problems in Vietnam.

It would promote the deployment of renewable energy as well as enact measures to counteract climate change, expand shrimp production yet protect water resources, decrease land use and reduce CO2 emissions at the same time. Based on the first analyses, the pilot project in Bac Liêu can save about 15,000 carbon dioxide emissions and reduce the water use by 75 percent compared to a conventional shrimp farm. “By combining aquaculture and photovoltaics, the land use rate increases by at least 65 percent compared to an open field PV plant,” so Max Trommsdorff from Fraunhofer ISE.

This project can contribute an important part in reducing land use conflicts in this densely populated country while helping to meet the growing energy consumption (10 percent annually) with renewable energy sources. The aquafarm operators enjoy other advantages from this technology, such as protection against predatory animals, improved working conditions due to shading and a stable, lower water temperature that helps to promote the shrimps’ growth.

With respect to the increasing growth of both PV and aquaculture worldwide, this concept becomes relevant for numerous other developing and threshold countries. “Fraunhofer ISE promotes the establishment of further APV demonstration plants in development and threshold countries with the aim of making a lasting contribution to improving resource-efficient land use and regenerating parched soil,” explains Stephan Schindele of Fraunhofer ISE.

Weitere Informationen:

https://www.smart-agropv.com/ - Website of APV pilot project in Chile (in Spanish)
http://www.agrophotovoltaik.de/english/agrophotovoltaics/ - Webseite on APV

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>