Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid Mine Drainage Technology Could Aid Marcellus Shale Drilling

22.11.2011
A technology being developed by a Temple University researcher as a solution to Pennsylvania's historic problem with acid mine drainage could also have applications for the state's newest environmental challenge: hydraulic fracturing of Marcellus Shale.

Rock left behind in abandoned mines after coal is extracted contains sulfur impurities that decompose and form sulfuric acid when exposed to air, water and microbes. When water fills a mine’s underground tunnels, sulfuric acid can leach off the walls and get into nearby groundwater, according to Temple University Chemistry Professor Daniel Strongin.

While chemicals such as lime are often used to neutralize acidic runoff, they do not eliminate the root cause, said Strongin. So his lab is developing a technology that uses a specific class of lipid molecules that bind to the metal sulfide, forming a hydrophobic layer that keeps water, oxygen and bacteria from causing it to decompose.

Strongin, who has been working on developing this lipid-based technology for the past eight years, said that approximately 2,400 miles of waterways in Pennsylvania are affected by the contaminated water from the abandoned mines, which is typically acidic and contains large amounts of heavy metals that are deadly to aquatic species.

“Pennsylvania spends roughly $19 million a year to address this issue, largely due to the vast number of abandoned mining areas,” he said. “I’ve read that it’s estimated that it would cost $50 billion to fix the entire problem.”

Strongin now believes that mitigating acid drainage using lipid technology could enable the mine waters to be used in the process of extracting natural gas from the Marcellus Shale formation. During hydraulic fracking, highly pressurized water is pumped into the earth to break or fracture the shale and extract the gas.

“The process requires a tremendous amount of water; essentially, in a given well you need 2-5 million gallons to fracture the rock and release the natural gas,” he said. “As you might expect, people don't want to waste fresh water on that process.”

Strongin said a panel commissioned by the governor of Pennsylvania has recently recommended using water from abandoned mining areas for hydro-fracking the Marcellus Shale.

“It is my belief that our lipid technology could be used to stop acid mine drainage, or the root cause of acid mine drainage, in such a way that the waters emanating from these abandoned mining areas would be more usable in the hydro-fracking process,” he said.

Strongin said there is a cost incentive to remediate abandoned mining areas — which are often in close proximity to the drilling areas — and the contaminated water emanating from those mines for use in the natural gas drilling.

“It cuts down on the costs to transport water to the wells, and you’re not using fresh water resources for the drilling.”

In addition to cleaning the acid mine drainage for use in drilling, Strongin also believes the lipid technology may be useful for cleaning the flow-back water that is a result of the hydro-fracking.

“A lot of the same chemistry that these lipids carry out on the acid mine drainage may be applicable to these contaminated flow-back waters, which carry a lot of dissolved solids and particulate matter,” he said.

Initially funded by the U.S. Department of Energy, Strongin’s research is currently being supported by the Nanotechnology Institute.

Preston M. Moretz | Newswise Science News
Further information:
http://www.temple.edu

More articles from Power and Electrical Engineering:

nachricht Lights, camera, action... the super-fast world of droplet dynamics
26.02.2020 | University of Leeds

nachricht Turbomachine expander offers efficient, safe strategy for heating, cooling
25.02.2020 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists develop algorithm for researching evolution of species with WGD

26.02.2020 | Information Technology

MOF co-catalyst allows selectivity of branched aldehydes of up to 90%

26.02.2020 | Life Sciences

Structural framework for tumors also provides immune protection

26.02.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>