Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A solution for cleaning up PFAS, one of the world's most intractable pollutants

06.12.2019

Treatment train for a PFAS compound known by its trade name, GenX

A cluster of industrial chemicals known by the shorthand term "PFAS" has infiltrated the far reaches of our planet with significance that scientists are only beginning to understand.


An electrochemical flow cell with a stainless steel cathode and a boron-doped diamond anode is used to treat a concentrated waste stream of GenX.

Credit: Colorado State University

PFAS - Per- and polyfluoroalkyl substances - are human-made fluorine compounds that have given us nonstick coatings, polishes, waxes, cleaning products and firefighting foams used at airports and military bases.

They are in consumer goods like carpets, wall paint, popcorn bags and water-repellant shoes, and they are essential in the aerospace, automotive, telecommunications, data storage, electronic and healthcare industries.

The carbon-fluorine chemical bond, among nature's strongest, is the reason behind the wild success of these chemicals, as well as the immense environmental challenges they have caused since the 1940s.

PFAS residues have been found in some of the most pristine water sources, and in the tissue of polar bears. Science and industry are called upon to clean up these persistent chemicals, a few of which, in certain quantities, have been linked to adverse health effects for humans and animals.

Among those solving this enormously difficult problem are engineers in the Walter Scott, Jr. College of Engineering at Colorado State University. CSU is one of a limited number of institutions with the expertise and sophisticated instrumentation to study PFAS by teasing out their presence in unimaginably trace amounts.

Now, CSU engineers led by Jens Blotevogel, research assistant professor in the Department of Civil and Environmental Engineering, have published a new set of experiments tackling a particular PFAS compound called hexafluoropropylene oxide dimer acid, better known by its trade name, GenX.

The chemical, and other polymerization processes that use similar chemistries, have been in use for about a decade. They were developed as a replacement for legacy PFAS chemicals known as "C8" compounds that were - and still are - particularly persistent in water and soil, and very difficult to clean up (hence their nickname, "forever chemicals").

GenX has become a household name in the Cape Fear basin area of North Carolina, where it was discovered in the local drinking water a few years ago.

The responsible company, Chemours, has committed to reducing fluorinated organic chemicals in local air emissions by 99.99%, and air and water emissions from its global operations by at least 99% by 2030. For the last several years, Chemours has also funded Blotevogel's team at CSU as they test innovative methods that would help the environment as well as assist the company's legacy cleanup obligations.

Writing in Environmental Science and Technology, Blotevogel teamed up with Tiezheng Tong, assistant professor in civil and environmental engineering, to demonstrate an effective "treatment train" that combines multiple technologies to precisely isolate and destroy GenX residues in water.

One of the current practices for treating GenX-contaminated water is high-temperature incineration - a process that is "excessively expensive," according to the researchers, and very wasteful for water and energy recovery. "It works," Blotevogel said, "but it's not sustainable."

The researchers are offering a better solution. Tong, a leading expert in membrane filtration and desalination methods for environmental hazards, employed a nanofiltration membrane with appropriate pore sizes to filter out 99.5% of dissolved GenX compounds. Once that concentrated waste stream is generated, the researchers showed that electrochemical oxidation, which Blotevogel considers one of the most viable technologies for destructive PFAS cleanup, can then break down the waste into harmless products.

Currently, companies can also use several measures for removal of PFAS from water to acceptable levels: adsorption to activated carbon, ion exchange, and reverse osmosis. While all three of these technologies can be highly effective, they do not result directly in destruction of PFAS compounds, Blotevogel said.

The CSU researchers alternative solution of electrochemical treatment uses electrodes to chemically change the PFAS into more benign compounds. Blotevogel's lab has demonstrated several successful pilot-scale decontamination efforts, and is working to continue optimizing their methodologies. Combined with Tong's nanofiltration system, the waste stream would be directed and concentrated, saving companies money and lowering the entire process's carbon footprint.

The researchers hope to continue working together to refine their process, for example, by testing different types of filtration membranes to determine the most optimal materials and design.

###

Link to paper: https://pubs.acs.org/doi/abs/10.1021/acs.est.9b03171

Anne Manning | EurekAlert!
Further information:
https://engr.source.colostate.edu/a-solution-for-cleaning-up-pfas-one-of-the-worlds-most-intractable-pollutants/
http://dx.doi.org/10.1021/acs.est.9b03171

More articles from Power and Electrical Engineering:

nachricht Anode material for safe batteries with a long cycle life
06.08.2020 | Karlsruher Institut für Technologie (KIT)

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>