Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A solution for cleaning up PFAS, one of the world's most intractable pollutants

06.12.2019

Treatment train for a PFAS compound known by its trade name, GenX

A cluster of industrial chemicals known by the shorthand term "PFAS" has infiltrated the far reaches of our planet with significance that scientists are only beginning to understand.


An electrochemical flow cell with a stainless steel cathode and a boron-doped diamond anode is used to treat a concentrated waste stream of GenX.

Credit: Colorado State University

PFAS - Per- and polyfluoroalkyl substances - are human-made fluorine compounds that have given us nonstick coatings, polishes, waxes, cleaning products and firefighting foams used at airports and military bases.

They are in consumer goods like carpets, wall paint, popcorn bags and water-repellant shoes, and they are essential in the aerospace, automotive, telecommunications, data storage, electronic and healthcare industries.

The carbon-fluorine chemical bond, among nature's strongest, is the reason behind the wild success of these chemicals, as well as the immense environmental challenges they have caused since the 1940s.

PFAS residues have been found in some of the most pristine water sources, and in the tissue of polar bears. Science and industry are called upon to clean up these persistent chemicals, a few of which, in certain quantities, have been linked to adverse health effects for humans and animals.

Among those solving this enormously difficult problem are engineers in the Walter Scott, Jr. College of Engineering at Colorado State University. CSU is one of a limited number of institutions with the expertise and sophisticated instrumentation to study PFAS by teasing out their presence in unimaginably trace amounts.

Now, CSU engineers led by Jens Blotevogel, research assistant professor in the Department of Civil and Environmental Engineering, have published a new set of experiments tackling a particular PFAS compound called hexafluoropropylene oxide dimer acid, better known by its trade name, GenX.

The chemical, and other polymerization processes that use similar chemistries, have been in use for about a decade. They were developed as a replacement for legacy PFAS chemicals known as "C8" compounds that were - and still are - particularly persistent in water and soil, and very difficult to clean up (hence their nickname, "forever chemicals").

GenX has become a household name in the Cape Fear basin area of North Carolina, where it was discovered in the local drinking water a few years ago.

The responsible company, Chemours, has committed to reducing fluorinated organic chemicals in local air emissions by 99.99%, and air and water emissions from its global operations by at least 99% by 2030. For the last several years, Chemours has also funded Blotevogel's team at CSU as they test innovative methods that would help the environment as well as assist the company's legacy cleanup obligations.

Writing in Environmental Science and Technology, Blotevogel teamed up with Tiezheng Tong, assistant professor in civil and environmental engineering, to demonstrate an effective "treatment train" that combines multiple technologies to precisely isolate and destroy GenX residues in water.

One of the current practices for treating GenX-contaminated water is high-temperature incineration - a process that is "excessively expensive," according to the researchers, and very wasteful for water and energy recovery. "It works," Blotevogel said, "but it's not sustainable."

The researchers are offering a better solution. Tong, a leading expert in membrane filtration and desalination methods for environmental hazards, employed a nanofiltration membrane with appropriate pore sizes to filter out 99.5% of dissolved GenX compounds. Once that concentrated waste stream is generated, the researchers showed that electrochemical oxidation, which Blotevogel considers one of the most viable technologies for destructive PFAS cleanup, can then break down the waste into harmless products.

Currently, companies can also use several measures for removal of PFAS from water to acceptable levels: adsorption to activated carbon, ion exchange, and reverse osmosis. While all three of these technologies can be highly effective, they do not result directly in destruction of PFAS compounds, Blotevogel said.

The CSU researchers alternative solution of electrochemical treatment uses electrodes to chemically change the PFAS into more benign compounds. Blotevogel's lab has demonstrated several successful pilot-scale decontamination efforts, and is working to continue optimizing their methodologies. Combined with Tong's nanofiltration system, the waste stream would be directed and concentrated, saving companies money and lowering the entire process's carbon footprint.

The researchers hope to continue working together to refine their process, for example, by testing different types of filtration membranes to determine the most optimal materials and design.

###

Link to paper: https://pubs.acs.org/doi/abs/10.1021/acs.est.9b03171

Anne Manning | EurekAlert!
Further information:
https://engr.source.colostate.edu/a-solution-for-cleaning-up-pfas-one-of-the-worlds-most-intractable-pollutants/
http://dx.doi.org/10.1021/acs.est.9b03171

More articles from Power and Electrical Engineering:

nachricht MTU engineers examine lithium battery defects
27.01.2020 | Michigan Technological University

nachricht New electro-pulse plant at TU Freiberg enables energy-efficient processing of high-tech metals
23.01.2020 | Technische Universität Bergakademie Freiberg

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil

27.01.2020 | Life Sciences

Superfast insights into cellular events

27.01.2020 | Life Sciences

The 'place' of emotions

27.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>