Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018

The thermal runaway issue has been a long-standing obstacle impeding the development of high energy density and high power delivery batteries. These batteries would generate a lot of heat in ultrafast charge/discharge process or hazardous conditions, such as overcharging and short-circuit. To dissipate the heat accumulated in the batteries, physical safety designs such as fused disconnect switches, extinguishing agents, and shutdown current collectors have been employed. However, these approaches only provide a one-time protection. There is no provision for these strategies to spontaneously restore the original working condition of batteries once the temperature is cooled down. Therefore, intelligent and active internal safety strategies need to be designed for fabricating smart batteries with dynamic electrochemical performance and self-adaptive response to temperature.

Reversible sol-gel transition hydrogels have received abundant research interests owing to their smart responsibility to ambient temperature. They are normally in flowing liquid state at or below room temperature and can transform into stationary gels when heating above critical temperature.


Schematic illustration of the thermoresponsive Zn/α-MnO2 batteries with reversible sol-gel transition electrolye.

Credit: ©Science China Press


Dynamic electrochemical performance the thermoresponsive Zn/α-MnO2 batteries at different temperature.

Credit: ©Science China Press

Moreover, this transition can be reversed after cooling down, displaying interesting temperature-dependent properties. Sol-gel transition polymer may potentially be good candidates for designing advanced batteries with intelligent thermal responsibility.

Recently, a research team led by Prof. Chunyi Zhi from City University of Hong Kong has successfully synthesized a temperature-sensitive sol-gel transition electrolyte comprising proton-incorporated poly(N-isopropylacrylamide-co-acrylic acid) (PNA) and incorporated it into a rechargeable Zn/α-MnO2 battery system.

After heating above the low critical temperature, a gelation process occurs in the PNA sol-gel electrolyte and significantly inhibits the migration of zinc ions, leading to a decreased specific capacity and an increased internal resistance of the battery, thus shutting down the battery.

After cooling down, the transition is reversed to liquid state and an original electrochemical performance can be restored. More importantly, unlike traditional strategies, the sol-gel electrolyte endows the thermoresponsive battery with dynamic charge/discharge rate performance at different temperature, which enabled a "smart" thermal control for the battery. This work represents a feasible concept for self-protection batteries via reversible sol-gel transition.

###

This work was supported by NSFC/RGC Joint Research Scheme under Project N_CityU123/15 and NSFC 5151101197 and a Grant from City University of Hong Kong (PJ7004645). The work was also partially sponsored by Science & Technology Department of Sichuan Province (2017JY0088).

See the article:

Funian Mo, Hongfei Li, Zengxia Pei, Guojin Liang, Longtao Ma, Qi Yang, Donghong Wang, Yan Huang, Chunyi Zhi. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes, Science Bulletin, 2018, doi: 10.1016/j.scib.2018.06.019

https://www.sciencedirect.com/science/article/pii/S2095927318303207

Chunyi Zhi | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scib.2018.06.019

Further reports about: advanced batteries battery battery system electrolyte heating rechargeable zinc zinc ions

More articles from Power and Electrical Engineering:

nachricht Next generation of greenhouses may be fully solar powered
10.02.2020 | North Carolina State University

nachricht How iron carbenes store energy from sunlight -- and why they aren't better at it
07.02.2020 | DOE/SLAC National Accelerator Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>