Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new, highly sensitive chemical sensor uses protein nanowires

14.05.2020

UMass Amherst team introduces high-performing 'green' electronic sensor

Writing in the journal NanoResearch, a team at the University of Massachusetts Amherst reports this week that they have developed bioelectronic ammonia gas sensors that are among the most sensitive ever made.


Protein nanowires (light green) harvested from Geobacter (background) are sandwiched between electrodes (gold) to form bioelectronic sensor for detection of biomolecules (red).

Credit: UMass Amherst/Yao lab

The sensor uses electric-charge-conducting protein nanowires derived from the bacterium Geobacter to provide biomaterials for electrical devices. More than 30 years ago, senior author and microbiologist Derek Lovley discovered Geobacter in river mud. The microbes grow hair-like protein filaments that work as nanoscale "wires" to transfer charges for their nourishment and to communicate with other bacteria.

First author and biomedical engineering doctoral student Alexander Smith, with his advisor Jun Yao and Lovley, say they designed this first sensor to measure ammonia because that gas is important to agriculture, the environment and biomedicine. For example, in humans, ammonia on the breath may signal disease, while in poultry farming, the gas must be closely monitored and controlled for bird health and comfort and to avoid feed imbalances and production losses.

Yao says, "This sensor allows you to do high-precision sensing; it's much better than previous electronic sensors." Smith adds, "Every time I do a new experiment, I'm pleasantly surprised. We didn't expect them to work as well as they have. I really think they could have a real positive impact on the world."

Smith says existing electronic sensors often have either limited or low sensitivity, and they are prone to interference from other gases. In addition to superior function and low cost, he adds, "our sensors are biodegradable so they do not produce electronic waste, and they are produced sustainably by bacteria using renewable feedstocks without the need for toxic chemicals."

Smith conducted the experiments over the past 18 months as part of his Ph.D. work. It was known from Lovley's earlier studies that the protein nanowires' conductivity changed in response to pH - the acid or base level- of solution around the protein nanowires. This moved the researchers to test the idea that they could be highly responsive to molecule binding for biosensing. "If you expose them to a chemical, the properties change and you can measure the response," Smith notes.

When he exposed the nanowires to ammonia, "the response was really noticeable and significant," Smith says. "Early on, we found we could tune the sensors in a way that shows this significant response. They are really sensitive to ammonia and much less to other compounds, so the sensors can be very specific."

Lovley adds, that the "very stable" nanowires last a long time, the sensor functions consistently and robustly after months of use, and work so well "it is remarkable."

Yao says, "These protein nanowires are always amazing me. This new use is in a completely different area than we had worked in before." Previously, the team has reported using protein nanowires to harvest energy from humidity and applying them as memristors for biological computing.

Smith, who calls himself "entrepreneurial," won first place in UMass Amherst's 2018 Innovation Challenge for the startup business plan for the company he formed with Yao and Lovley, e-Biologics. The researchers have followed up with a patent application, fundraising, business development and research and development plans.

Lovley says, "This work is the first proof-of-concept for the nanowire sensor. Once we get back in the lab, we'll develop sensors for other compounds. We are working on tuning them for an array of other compounds."

Support for the work came as a CAREER grant and Graduate Research Fellowship from the National Science Foundation, UMass Amherst's Office of Technology Commercialization and Ventures and the campus's Center for Hierarchical Manufacturing, an NSF-funded Nanoscale Science and Engineering Center.

Media Contact

Janet Lathrop
jlathrop@umass.edu
603-892-0649

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!
Further information:
https://www.umass.edu/newsoffice/article/new-highly-sensitive-chemical-sensor-uses
http://dx.doi.org/10.1007/s12274-020-2825-6

More articles from Power and Electrical Engineering:

nachricht Record efficiency for printed solar cells
09.07.2020 | Swansea University

nachricht Bespoke catalysts for power-to-X
09.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>