Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A camera that peers around corners

21.03.2012
A new imaging system could use opaque walls, doors or floors as 'mirrors' to gather information about scenes outside its line of sight

In December, MIT Media Lab researchers caused a stir by releasing a slow-motion video of a burst of light traveling the length of a plastic bottle. But the experimental setup that enabled that video was designed for a much different application: a camera that can see around corners.

In a paper appearing this week in the journal Nature Communications, the researchers describe using their system to produce recognizable 3-D images of a wooden figurine and of foam cutouts outside their camera's line of sight. The research could ultimately lead to imaging systems that allow emergency responders to evaluate dangerous environments or vehicle navigation systems that can negotiate blind turns, among other applications.

The principle behind the system is essentially that of the periscope. But instead of using angled mirrors to redirect light, the system uses ordinary walls, doors or floors — surfaces that aren't generally thought of as reflective.

The system exploits a device called a femtosecond laser, which emits bursts of light so short that their duration is measured in quadrillionths of a second. To peer into a room that's outside its line of sight, the system might fire femtosecond bursts of laser light at the wall opposite the doorway. The light would reflect off the wall and into the room, then bounce around and re-emerge, ultimately striking a detector that can take measurements every few picoseconds, or trillionths of a second. Because the light bursts are so short, the system can gauge how far they've traveled by measuring the time it takes them to reach the detector.

The system performs this procedure several times, bouncing light off several different spots on the wall, so that it enters the room at several different angles. The detector, too, measures the returning light at different angles. By comparing the times at which returning light strikes different parts of the detector, the system can piece together a picture of the room's geometry.

Off the bench

Previously, femtosecond lasers had been used to produce extremely high-speed images of biochemical processes in a laboratory setting, where the trajectories of the laser pulses were carefully controlled. "Four years ago, when I talked to people in ultrafast optics about using femtosecond lasers for room-sized scenes, they said it was totally ridiculous," says Ramesh Raskar, an associate professor at the MIT Media Lab, who led the new research.

Andreas Velten, a former postdoc in Raskar's group who is now at the University of Wisconsin at Madison, conducted the experiments reported in Nature Communications using hardware in the lab of MIT chemist Moungi Bawendi, who's collaborating on the project. Velten fired femtosecond bursts of laser light at an opaque screen, which reflected the light onto objects suspended in front of another opaque panel standing in for the back wall of a room.

The data collected by the ultrafast sensor were processed by algorithms that Raskar and Velten developed in collaboration with Otkrist Gupta, a graduate student in Raskar's group; Thomas Willwacher, a mathematics postdoc at Harvard University; and Ashok Veeraraghavan, an assistant professor of electrical engineering and computer science at Rice University. The 3-D images produced by the algorithms were blurry but easily recognizable.

Raskar envisions that a future version of the system could be used by emergency responders — firefighters looking for people in burning buildings or police determining whether rooms are safe to enter — or by vehicle navigation systems, which could bounce light off the ground to look around blind corners. It could also be used with endoscopic medical devices, to produce images of previously obscure regions of the human body.

In its work so far, Raskar says, his group has discovered that the problem of peering around a corner has a great deal in common with that of using multiple antennas to determine the direction of incoming radio signals. Going forward, Raskar hopes to use that insight to improve the quality of the images the system produces and to enable it to handle visual scenes with a lot more clutter.

Written by Larry Hardesty, MIT News Office

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy
17.05.2019 | DOE/Oak Ridge National Laboratory

nachricht New test rig components for faster development and validation
16.05.2019 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>