Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'dirt cheap' magnetic field sensor from 'plastic paint'

13.06.2012
Spintronic device uses thin-film organic semiconductor

University of Utah physicists developed an inexpensive, highly accurate magnetic field sensor for scientific and possibly consumer uses based on a "spintronic" organic thin-film semiconductor that basically is "plastic paint."

The new kind of magnetic-resonance magnetometer also resists heat and degradation, works at room temperature and never needs to be calibrated, physicists Christoph Boehme, Will Baker and colleagues report online in the Tuesday, June 12 edition of the journal Nature Communications.

The magnetic-sensing thin film is an organic semiconductor polymer named MEH-PPV. Boehme says it really is nothing more than an orange-colored "electrically conducting, magnetic field-sensing plastic paint that is dirt cheap. We measure magnetic fields highly accurately with a drop of plastic paint, which costs just as little as drop of regular paint."

The orange spot is only about 5-by-5 millimeters (about one-fifth inch on a side), and the part that actually detects magnetic fields is only 1-by-1 millimeters. This organic semiconductor paint is deposited on a thin glass substrate which then is mounted onto a circuit board with that measures about 20-by-30 millimeters (about 0.8 by 1.2 inches).

The new magnetic field sensor is the first major result to come out of the new Materials Research Science and Engineering Center launched by the University of Utah last September: a six-year, $21.5 million program funded by the National Science Foundation, the Utah Science Technology and Research initiative and the university.

University of Utah physics professor Brian Saam, one of the center's principal investigators, says the new magnetometer "is viewed widely as having exceptional impact in a host of real-world science and technology applications."

Boehme is considering forming a spinoff company to commercialize the sensors, on which a patent is pending. In the study, the researchers note that "measuring absolute magnetic fields is crucial for many scientific and technological applications."

As for potential uses in consumer products, Boehme says it's difficult to predict what will happen, but notes that existing, more expensive magnetic-field sensors "are in many, many devices that we use in daily life: phones, hard drives, navigation devices, door openers, consumer electronics of many kinds. However, Joe Public usually is not aware when he uses those sensors."

"There are sensors out there already, but they're just not nearly as good – stable and accurate – and are much more expensive to make," Saam says.

Boehme believes the devices could be on the market in three years or less – if they can be combined with other new technology to make them faster. Speed is their one drawback, taking up to a few seconds to read a magnetic field.

Boehme, the study's senior author, conducted the research with University of Utah physics doctoral students Will Baker (the first author), Kapildeb Ambal, David Waters and Kipp van Schooten; postdoctoral researcher Hiroki Morishita; physics undergraduate student Rachel Baarda; and two physics professors who remain affiliated with the University of Utah after moving elsewhere: Dane McCamey of the University of Sydney, Australia, and John Lupton of the University of Regensburg, Germany.

The study was funded by the U.S. Department of Energy, National Science Foundation, David and Lucile Packard Foundation and Australian Research Council.

Sensor Based on Organic Spintronics

The sensors are based on a field of science named spintronics, in which data is stored both electronically in the electrical charges of electrons or atomic nuclei and in what is known as the "spin" of those subatomic particles.

Described simply, spin makes a particle behave like a tiny bar magnet that is pointed up or down within an electron or a nucleus. Down can represent 0 and up and represent 1, similar to how in electronics no charge represents 0 and a charge represents 1. Spintronics allows more information – spin and charge – to be used than electronics, which just uses charge.

The new magnetic field sensor paint contains negatively charged electrons and positively charged "holes" that align their spins parallel or not parallel in the absence or presence of a magnetic field – but only if radio waves of a certain frequency also are applied to the semiconductor paint.

So an electrical current is applied to the new device. Electrical contacts in the device act as tiny broadcast antennas to bombard the plastic paint with radio waves, which the researchers gradually change in frequency. If a magnetic field is present, the spins in the polymer paint will flip when the frequency of the radio waves matches the magnetic field. The change of spin in the paint is converted to an electrical current the researchers then read to determine magnetic field strength.

Because the paint is an organic polymer, the sensor is known as an organic spintronics device.

Device Works Even if 'Old and Crusty'

The new magnetometer can detect magnetic fields ranging from 1,000 times weaker than Earth's magnetic field to tens of thousands times stronger – a range that covers intermediate to strong magnetic fields, Boehme says.

He says the new magnetometer cannot measure very weak magnetic fields, which now are measured by devices known as SQUIDS. It can measure strong magnetic fields, and although conventional magnetic resonance devices do that very well, they are bulky and expensive – such as those used in medical MRI machines – so the low cost and small size of the new magnetometers may give them some advantages. But the major use of the new devices is for intermediate strength magnetic fields, for which no existing device works as well, Boehme says.

Boehme's new sensor is known as an organic magnetic resonance magnetometer or OMRM. Its one disadvantage is it is slow, taking up to a few seconds to detect a magnetic field. Boehme hopes to combine his technology with similar developing magnetometer technology known as an organic magnetoresistant sensor, or OMAR, which is more than 100 times faster but requires calibration, isn't very accurate, detects only weak to moderate magnetic fields and is vulnerable to temperature fluctuations and material degradation.

The new device "can literally get old and crusty, and as long as it can carry a detectable current, the magnetic field can be measured accurately," Boehme says.

Boehme says new experiments will determine how much smaller the 1-square-millimeter sensing area can be made and still have it accurately detect magnetic fields. He is aiming for 1 million times smaller: "It's a matter of microfabrication."

University of Utah Communications
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>