Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-dimensional Light Emitting Diodes for future lighting technologies

12.07.2012
The Institute of Semiconductor Technology at Technische Universität (TU) Braunschweig is engaged in an EU-research project ‘GECCO’ developing a new pioneering generation of white light emitting diodes.
The innovative 3-dimensional assembly of the diodes is expected to provide more than tenfold the quantity of light output in comparison to those planar LEDs currently in use. The financial grant for this project amounts to a total sum of 3.8 million Euro, whereas the share of the TU Braunschweig amounts to 1.2 million Euro.

Already now, modern high-performance LEDs provide a bright light output at high efficiency and are meanwhile applied for automobile headlights, for example. At present, the production process for these kinds of LEDs is still not cost efficient enough and also the efficiency of these LEDs needs further improvement.

Tiny 'lighthouses' are more efficient

The international team of the GECCO project with their partners from Madrid, Bristol, Lodz, the OSRAM AG Munich and the OSRAM OS GmbH Regensburg is working hard on achieving their ambitious objectives.
Up to now, LEDs are being constructed in a planar way, meaning in layers and completely flat. The more light is being required, the more wafer area has to be produced, which is an expensive and laborious approach. The exceptional idea of the GECCO project is to assemble LEDs in a three-dimensional way so that actually every LED consists of a ‘light emitting tower’ from which the entire vertical surface is emitting light. Obviously the surface of the tower is much larger compared to the ground area of a planar LED. And in fact, it is exactly the gain of light emitting area that leads to a higher light output.

Thus, the manufacturing of an LED becomes much more cost-effective and as a result replacing ancient electric bulbs, halogen lamps as well as energy saving bulbs to LEDs is getting a lot more profitable. Considering the fact that currently 20 % of electrical energy worldwide is being utilized for illumination, this innovation provides an enormous potential as far as cost-effectiveness is concerned. In addition, LED lighting is particularly important for future electric mobility. Energy saving is of utmost importance in electric cars.
A million LEDs per square millimeter

The dimensions of the ‘light emitting towers’ are within the micrometer range. This means approximately one million LEDs fit on an area of one square millimeter. This process requires utmost precision which can only be achieved by applying nanotechnology manufacturing techniques.

The GECCO project is coordinated by Prof. Andreas Waag from the Institute of Semiconductor Technology, which is part of the Electrical Engineering Department of the Technische Universität Braunschweig.
With this project the Faculty of Electrical Engineering, Information Technology, Physics sets another example as to the further and ongoing strengthening of the University’s research profile in the specialization of NanoSystemsEngineering – this time in the true sense of the word – a bright and shining sign.

Background

The Institute of Semiconductor (IHT) is an institution of the Technische Universität Braunschweig and belongs to the Faculty of Electrical Engineering, Information Technology, Physics. The institute and its 40 staff members are engaged in particular in the research of semiconductor nanostructures and their application among others for nanoLEDs, the hydrogen generation, gas sensors, thermoelectrical generators, high-temperature and nanoparticle-sensors as well as solar cells.

For further information, please contact:
Prof. Dr. Andreas Waag
Institute of Semiconductor Technology
Technische Universität Braunschweig
Hans-Sommer-Strasse 66
38106 Braunschweig
Germany
a.waag@tu-braunschweig.de
phone +49-531-391-3774 (secretary) or -3773

Dr. Elisabeth Hoffmann | idw
Further information:
http://www.tu-braunschweig.de
http://www.iht.tu-bs.de/

More articles from Power and Electrical Engineering:

nachricht IHP technology ready for space flights
20.08.2018 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries
20.08.2018 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>