Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than 20 percent efficiency: SCHOTT Solar sets new record for monocrystalline screen-printed solar cells

24.08.2011
  • Industrial size 156 mm x 156 mm cell achieves 20.2 percent efficiency for the first time ever
  • Cell power of 4.92 W
  • Approach used in the world record poly module has now been applied successfully to mono cells

SCHOTT Solar has achieved yet another top performance. The solar company based in Mainz, Germany, has succeeded in manufacturing the world's first industrial size 156 mm x 156 mm monocrystalline screen-printed solar cell that achieves 20.2 percent efficiency.

This measurement was confirmed independently by Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany at the request of SCHOTT Solar. SCHOTT Solar AG has thus announced yet another major success in developing industry-oriented manufacturing processes for high-efficiency solar cells.

SCHOTT Solar laid the foundation for this outstanding achievement by developing new multicrystalline cell concepts that earned the company the world record for module efficiency of 17.6 percent in 2010. "We then decided to intensify our efforts to develop monocrystalline cells at the beginning of 2011. We were thus able to apply the know-how we had gained in more than three years of development work on multicrystalline solar cells to monocrystalline wafers in a consistent manner," explains Dr. Axel Metz, Director of Solar Cell Development at SCHOTT Solar in emphasizing the special significance of this achievement.

Early attempts to transfer these industry-oriented processes to Czochralski silicon wafers already allowed the researchers to achieve cell efficiencies of well over 19 percent rather quickly. The team at SCHOTT Solar then concentrated on improving the front side of the cell in order to be able to break through the 20 percent mark.

Thanks to a very fruitful collaboration with the Schmid Group from Freudenstadt, Germany, they were able to combine the Schmid selective emitter technology that is already well-established in manufacturing with the passivated rear side contact (PERC) technology of SCHOTT Solar. Some of this research work has been supported by government funding. The result is now the world's first 156 mm x 156 mm screen-printed solar cell with 20.2 percent efficiency.

"The cell performance of 4.92 W that we were able to achieve has encouraged the entire team to begin working on optimizing the actual manufacturing process and to apply these results to the development of highly efficient modules," says Klaus Wangemann, Head of Development at SCHOTT Solar AG. SCHOTT Solar will be releasing further details on how the new cell technology will be used in an actual product very shortly. This information will also be shared at the 26th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC). The EU PVSEC will be held in Hamburg from September 5 - 9 and SCHOTT Solar will be exhibiting at booth A37 in hall B5.

Pressekontakt:
SCHOTT AG
Christina Rettig
PR Manager
Tel: +49 (0)6131 - 66 4094
Fax: +49 (0)3641 - 28889 141
christina.rettig@schott.com

Fink & Fuchs Public Relations AG
Alexandra Mainka
Agentur
Tel: +49 (0)611 - 74131 86
Fax: +49 (0)611 - 74131 30
alexandra.mainka@ffpr.de
www.ffpress.net

Christina Rettig | SCHOTT AG
Further information:
http://www.schottsolar.de

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>