Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

20% Efficient Solar Cell on EpiWafer

14.09.2015

Recently NexWafe GmbH was spun out of the Fraunhofer Institute for Solar Energy Systems ISE, in order to bring the Institute’s kerfless EpiWafer technology to the market and rapid commercialization.

In the EpiWafer technology, a thick crystalline silicon layer is epitaxially deposited and subsequently detached after growth to produce a freestanding wafer of standard thickness.


Epitaxial Wafer (right) detached from re-usable seed wafer (left).

© Fraunhofer ISE

Due to the radical changes in the manufacturing value chain, EpiWafers can be produced at an appreciably lower cost compared to the traditional wafer manufacturing process. The EpiWafer is a direct substitute for conventional n- or p-doped silicon mono-crystalline wafers.

Now, Fraunhofer ISE reports on substantial progress in the development of its EpiWafers, which are seen as a drop-in replacement for conventional Cz wafers. Fraunhofer ISE’s research team in co-operation with NexWafe has optimized all production steps for the EpiWafer.

Analysis of the new n-doped EpiWafers shows that mean minority carrier lifetimes are above 1000 µs, indicating the same quality as n-type Cz wafers. Solar cells processed on these EpiWafers yield 20% efficiency, independently confirmed at the Fraunhofer ISE CalLab. “I am elated about this fantastic result,” says Dr. Stefan Janz, Head of the Department of Silicon Materials.

“This success attests to our fast progress made in only a few months since focusing on EpiWafers.” The solar cells achieve a short-circuit current of 39.6 mA/cm2, a world-record value for epitaxially grown silicon solar cells. The new results will be presented during the coming European PVSEC in Hamburg.

Dr. Stefan Reber, CEO of NexWafe, is also very excited about the new results: “These values demonstrate that our EpiWafer technology is a game-changing technology. It accelerates the shift of the market towards high efficiency modules by providing high quality drop-in mono-crystalline EpiWafers at a very competitive price.”

More information on NexWafe : http://www.nexwafe.com

Contact Person for further information:

Fraunhofer ISE
Dr. Stefan Janz
Phone +49 761 4588-5261
stefan.janz@ise.fraunhofer.de

NexWafe GmbH
Dr. Stefan Reber
Phone +49 761 7661 18600
info@nexwafe.com

Weitere Informationen:

http://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Patented nanostructure for solar cells: Rough optics, smooth surface
18.09.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht With Gallium Nitride for a Powerful 5G Cellular Network - EU project “5G GaN2” started
17.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>