Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

20.1%-efficient screen printed silicon solar cell with novel rear passivation layer

08.03.2012
The Institute for Solar Energy Research Hamelin (ISFH) in collaboration with SINGULUS TECHNOLOGIES AG increases the conversion efficiency of screen-printed silicon solar cells from today’s industry typical 17.0% to 18.5% to a record value of 20.1%, as confirmed by an independent measurement from the Fraunhofer ISE.
A novel ICP-AlOx / SiNy double layer at the rear side of the solar cell enables the improvement without applying a “selective emitter”. 20.1% is one of the highest efficiencies worldwide reported for industrial type silicon solar cells with screen-printed metallization (only Schott Solar and Q-Cells achieved higher efficiencies of 20.2%).

Two technological improvements enable the increased conversion efficiency. First, an ICP-AlOx/SiNy double layer passivates the rear surface of the solar cell. ICP stands for “Inductively Coupled Plasma”, which is a novel deposition method for AlOx developed at ISFH in cooperation with SINGULUS TECHNOLOGIES AG. SINGULUS is currently developing an integrated production solution for this passivation layer stack. The screen-printed aluminum on the cell’s rear side locally contacts the silicon wafer through line shaped contact openings formed by laser ablation. The modified cell rear improves reflection and reduces the charge carrier recombination which increases both the current and voltage of the solar cell.
Second, the cell front side is metallized using a “Print on Print” process, which results in a reduced contact finger width and hence less shadowing loss. This advanced screen printing process was optimized at ISFH in collaboration with DEK Solar, using their high accuracy Eclipse screen printing platform and precision screens. Beyond these innovations, the solar cell applies typical industrial processes, in particular a homogeneously phosphorus diffused emitter and a 156 x 156 mm2 large Czochralski (Cz) silicon wafer.

“This excellent result was achieved within the research project HighScreen funded by the German Federal Ministry of the Environment and also funded by our partners SolarWorld AG, Schott Solar AG, Solland Solar Cells GmbH, RENA GmbH und SINGULUS TECHNOLOGIES AG”, explains Dr. Thorsten Dullweber, head of the ISFH research group Solar Cell Production Processes. “Additionally, our collaboration with DEK Solar, Ferro Corporation and Heraeus GmbH accelerated the progress.” Prof. Dr. Rolf Brendel, Director of the ISFH, adds: “These technological innovations show the high potential to further reduce the costs of photovoltaic electricity.”

“The significant efficiency improvement demonstrated by the ICP-AlOx process further encourages SINGULUS in our strategy to offer an integrated production solution with ICP-AlOx for rear passivated solar cells”, explains Dr. Björn Roos, Product Manager Solar at SINGULUS TECHNOLOGIES AG.

About 80% of today’s industrially manufactured solar cells apply p-type silicon wafers in combination with screen printed metal contacts. Hence, efficiency improvements for this type of solar cell are highly relevant for the photovoltaic industry and represent an intensive field of research worldwide.

Dr. Roland Goslich | idw
Further information:
http://www.isfh.de/

Further reports about: DEK ISFH SINGULUS Solar Decathlon solar cells technologies

More articles from Power and Electrical Engineering:

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

nachricht NextGenBat: Basic research for mobile energy storage systems
12.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>