Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Twitter to predict financial markets

26.03.2012
UC Riverside professor and collaborators build model using Twitter data that outperforms other investment strategies

A University of California, Riverside professor and several other researchers have developed a model that uses data from Twitter to help predict the traded volume and value of a stock the following day.

A trading strategy based on the model created by Vagelis Hristidis, an associate professor at the Bourns College of Engineering, one of his graduate students and three researchers at Yahoo! in Spain, outperformed other baseline strategies by between 1.4 percent and nearly 11 percent and also did better than the Dow Jones Industrial Average during a four-month simulation.

"These findings have the potential to have a big impact on market investors," said Hristidis, who specializes in data mining research, which focuses on discovering patterns in large data sets. "With so much data available from social media, many investors are looking to sort it out and profit from it."

Hristidis and his co-authors, Eduardo J. Ruiz, one of his graduate students, and Carlos Castillo, Aristides Gionis and Alejandro Jaimes, all of whom work for Yahoo! Research Barcelona, presented the findings last month at the Fifth ACM International Conference on Web Search & Data Mining in Seattle.

Hristidis and his co-authors set out to study how activity in Twitter is correlated to stock prices and traded volume. While past research has looked the sentiment, positive or negative, of tweets to predict stock price, little research has focused on the volume of tweets and the ways that tweets are linked to other tweets, topics or users. Further, past work has mostly studied the overall stock market indexes, and not individual stocks.

They obtained the daily closing price and the number of trades from Yahoo! Finance for 150 randomly selected companies in the S&P 500 Index for the first half of 2010.

Then, they developed filters to select only relevant tweets for those companies during that time period. For example, if they were looking at Apple, they needed to exclude tweets that focused on the fruit.

They expected to find the number of trades was correlated with the number of tweets. Surprisingly, the number of trades is slightly more correlated with the number of what they call "connected components." That is the number of posts about distinct topics related to one company. For example, using Apple again, there might be separate networks of posts regarding Apple's new CEO, a new product it released and its latest earnings report.

They also found stock price is slightly correlated with the number of connected components.

For the study, the researchers simulated a series of investments between March 1, 2010 and June 30, 2010 and analyzed performance using several investment strategies. During that time frame, the Dow Jones Industrial Average fell 4.2 percent.

In two variants of an autoregression model, that is buying every day stocks based on the assumption that the stock price is a function of the prices of the stock in the last few days, losses were 8.9 percent and 13.1 percent.

In the random model, in which as random set of stocks is bought every, sold at the end of the day and repeated the next day, the average loss was 5.5 percent.

In the fixed model, which involves buying a set of stocks that have best combination of market cap, company size and total debt and keeping them for the entire simulation, the average loss was 3.8 percent.

The model the researchers developed using Twitter data lost on average 2.4 percent.

Hristidis notes several potential weaknesses in the study.

First, the trading strategy worked in a period when the Dow Jones dropped, but it may not produce the same results when the Dow Jones is rising. There is also sensitivity related to the duration of the trading. For example, it took 30 days in the simulation to start outperforming the Dow Jones.

The published paper that outlines the findings can be found at http://www.cs.ucr.edu/~vagelis/publications/wsdm2012-microblog-financial.pdf.

The research by Hristidis and Ruiz was supported by the National Science Foundation.

Sean Nealon | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Apple iPhone Riverside Tweets Twitter Twitter data stock price

More articles from Business and Finance:

nachricht Microtechnology industry is hiring – positive developments of past years continue
09.04.2018 | IVAM Fachverband für Mikrotechnik

nachricht RWI/ISL-Container Throughput Index with minor decline on a high overall level
20.03.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>