Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stock Market Models Help NYU Researchers Predict Animal Behavior

13.11.2014

In an unexpected mashup of financial and mechanical engineering, researchers have discovered that the same modeling used to forecast fluctuations in the stock market can be used to predict aspects of animal behavior. Their work proposes an unprecedented model for in silico—or computer-based—simulations of animal behavior. The findings were published in the Journal of the Royal Society Interface.

The team, led by Maurizio Porfiri, professor of mechanical and aerospace engineering and director of the school’s Dynamical Systems Laboratory, is more accustomed to studying the social behavior of zebrafish—a freshwater species often used in experiments due to its genetic similarity to humans. Porfiri has drawn considerable attention for his interdisciplinary research on the factors that influence zebrafish collective behavior.

However, designing procedures and conditions for animal experiments are time-intensive, and despite careful planning, many experiments yield mixed data. Porfiri and his team, comprising postdoctoral fellow Ross P. Anderson, doctoral student Violet Mwaffo, and former postdoctoral fellow Sachit Butail (now assistant professor at Indraprastha Institute of Information Technology Delhi), set out to develop a mathematical model of animal behavior that could predict the outcome or improve the effectiveness of experiments and minimize the number of fish used in them.

When mapping the movement of zebrafish as they swam, Porfiri and his colleagues observed that the species does not move in a continuous pattern; rather, it swims in a signature style characterized by coasting periods followed by sharp turns. As they plotted the turn rate of the fish over time, the researchers noticed that their data, with its small variations followed by large dips (reflecting fast turns), looked very different from the turn rate of other fish but very similar to another type of data, where such volatility is not only common but well studied: the stock market.

The team embraced the mathematical model known as a stochastic jump process, a term used by financial engineers and economists to describe the price jumps of financial assets over time. Using many of the same tools employed in financial analysis, the researchers were able to create a mathematical model of zebrafish swimming, mining video footage from previous experimental sessions to seed what they hope will become a robust database of zebrafish behavior under varying circumstances.

“We realized that if we could simulate the swimming behavior of these fish using a computer, we could test and predict their responses to new stimuli, whether that is the introduction or removal of a shoal mate, the presence of a robotic fish, or even exposure to alcohol,” Porfiri said. “In behavior studies, you can easily utilize thousands of test subjects to explore different variables. This will allow researchers to replace some of that experimentation with computer modeling.”

Porfiri emphasized that this mathematical model of animal behavior will also allow researchers to make better use of their data following experiments, not just beforehand. “The data that result from zebrafish experiments look quite messy initially,” Porfiri said. “Giving researchers a model they can use to compare, filter, and refine their analysis afterwards will allow them to maximize data for better results.”

Porfiri and his team plan to continue to add data to their model with the hope of creating a toolbox that all researchers engaged in this field of study can utilize.

The idea of incorporating financial engineering to model zebrafish behavior came from Mwaffo, now a doctoral student in Porfiri’s lab who had earned his master’s degree in financial engineering from the NYU Polytechnic School of Engineering.

This work was supported by grants from the National Science Foundation. The full paper, “A Jump Persistent Turning Walker to Model Zebrafish Locomotion” is here.


Learn more about: Maurizio Porfiri

Kathleen Hamilton | EurekAlert!
Further information:
http://engineering.nyu.edu/press-release/2014/11/12/stock-market-models-help-nyu-researchers-predict-animal-behavior

More articles from Business and Finance:

nachricht Microtechnology industry is hiring – positive developments of past years continue
09.04.2018 | IVAM Fachverband für Mikrotechnik

nachricht RWI/ISL-Container Throughput Index with minor decline on a high overall level
20.03.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>