Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian countries gain prominence in science and technology as US loses ground

15.03.2005


The global landscape for science and technology is changing, with increased competition for resources and recognition. That’s beginning to look like bad news for the innovative edge the United States has long enjoyed.




"Will the United States own the technology of the future? Probably not all of it, and only if we compete harder to maintain our current position," said Diana Hicks, professor and chair of Georgia Institute of Technology’s School of Public Policy.

Many foreign governments have been strengthening their educational and research programs, she explained. As a result, the gap is closing between the United States and its overseas competitors, with Asian countries – China, South Korea, Japan, Taiwan, Singapore and India -- showing particular gains.


Hicks will discuss trends in Asian research and development and their impact on U.S. education and industry on March 14 at the American Chemical Society’s 229th national meeting in San Diego, Calif. Speaking at the symposium "Chemistry Enterprise 2015: Where in the World Will We Be? The Big Picture," Hicks will present a number of benchmarks that raise concern for the United States. Bigger talent pool: The number of researchers in Asia has grown rapidly as more Asians, especially the Chinese, earn doctoral degrees. At the same time, the number of U.S. citizens pursuing doctoral degrees has been decreasing.

In addition, the number of Asian students who study for doctoral degrees in the United States dropped 19 percent in just four years, 1994 to 1998. That’s disturbing because those students had helped make up for the dearth of U.S.-born students enrolled in science and engineering, Hicks explained. Foreign students often remain in the United States for research jobs, contributing to the nation’s knowledge base.

Increased R&D spending: From 1995 through 2001, China, South Korea and Taiwan increased gross R&D spending by about 140 percent, while the United States increased its investments by only 34 percent.

Another disturbing signpost: 68 percent of all domestic R&D money in the United States now comes from the private sector. Nearly three-fourths of this money goes toward development instead of basic research (in which researchers try to gain greater knowledge of a subject without specific applications in mind).

"Basic research is important because it sets up the country for the next generation of technology so we don’t run out of innovations," Hicks said. "Funding basic research is the role of the public sector, and yet federal spending for basic research in engineering and the physical sciences has shown little or no growth in the last 30 years."

Patent growth: Since 1988, the number of U.S. patent applications for innovations originating in Asia increased 789 percent, with South Korea evidencing especially strong gains. In contrast, U.S. patent applications for homegrown technology grew more slowly at a rate of 116 percent.

Published papers: The United States’ share of science and engineering papers published worldwide fell from 38 percent in 1988 to 31 percent in 2001, while European and Asian papers have been on the upswing. In fact, Western Europe, which evidenced a 36 percent share in 2001, now one-ups the United States. During the 1988-2001 period, Asia’s share of published papers grew from 11 to 17 percent.

Although scientific papers don’t always have immediate commercial applications, they remain an important measure of our knowledge base, Hicks said. "It’s a sign that you have highly skilled people who are producing the necessary knowledge for later applications," she added.

When it comes to collaborating on papers for scientific journals, the United States traditionally has been the go-to country. Yet Asian countries are beginning to collaborate more among themselves. "This makes the United States appear slightly less important – another sign that our dominance is starting to decline," Hicks said.

Granted, these benchmarks are relative, reflecting percentage growth rather than absolute numbers. Yet in the late 1990s, the actual number of published papers from U.S. researchers also began to wane, which is startling, Hicks said.

"The number of pages in journals like Nature or Science can only grow so fast," she explained. "If Asian and European nations increase their scientific capability faster, they crowd out some of our efforts, which reduces the perceived achievement of younger U.S. scientists. Although U.S. researchers will work far harder than previous generations, they will not command the same dominating position in world science as did their predecessors."

A member of the Task Force on the Future of American Innovation, Hicks spoke recently in Washington, D.C., where the coalition of business and academic leaders called for increased federal spending for basic research. She will make another presentation in Washington on April 5 at the 3rd annual Engineering R&D Symposium, sponsored by the United Engineering Foundation and several other industry groups.

"In contrast to natural disasters like the recent tsunami, this is a slow-developing trend, and one that’s hard to see from inside the United States," Hicks said. "We’re still a very competitive country, but it’s important to look at the long-range implications of these benchmarks. Maintaining our leadership role in science and innovation is critical to economic strength and national security."

Jane M. Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Business and Finance:

nachricht Microtechnology industry is hiring – positive developments of past years continue
09.04.2018 | IVAM Fachverband für Mikrotechnik

nachricht RWI/ISL-Container Throughput Index with minor decline on a high overall level
20.03.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>