Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017

A proposed tax on systemically risky financial transactions could reduce the risk of financial system crashes by spurring financial networks to reshape in more resilient ways.

A tax on systemically risky transactions could reshape financial networks into a new structure that is less vulnerable to cascading financial system shocks such as the 2008 financial crisis, according to new IIASA research published in the Journal of Economic Dynamics and Control.


This graph shows the distribution of the systemic impact of banks in the simulated network, with no tax (red), a Tobin-like tax (blue) and the SRT (green).

©Leduc & Thurner, 2017

By taxing the transactions that create greater risk of network failure, the tax, known as a Systemic Risk Tax (SRT), would essentially rewire the financial system into a more resilient form.

The SRT was introduced in previous research by IIASA researchers Sebastian Poledna and Stefan Thurner, where they showed its validity on a large-scale agent based simulator. The new research now shows that the idea of the SRT holds much more generally on fundamental mathematical grounds.

“The idea behind this tax is to create incentives for banks to form a more resilient network,” says IIASA researcher Matt Leduc, a study author. In the modern financial system, banks are connected to each other through transactions such as lending and borrowing. In this highly connected system, if one bank fails, this can lead to a cascade of bank failures.

In the current regulatory system there are no real incentives to reduce systemic risk, which means that finance remains vulnerable to future shocks and crises. Even new “Tobin style” transaction taxes that have been proposed and introduced following the 2008 financial crisis do not do much to reduce systemic risk, according to previous research. Leduc explains that this is because such taxes are charged indiscriminately on every transaction, rather than targeting the transactions that increase risk.

“Transaction taxes also tend to reduce transaction volume overall, which is not what you want in the banking system. The fascinating thing about the SRT is that it does not reduce volume, but just re-shapes the network,” says Thurner, a study author. An SRT could rewire the financial network into a new, more resilient structure that could better withstand shocks and bank failures.

The recent findings on the proposed systemic risk tax brings the previous body of work onto a new level, by showing that there exist two equilibria, one is basically free of systemic risk when the SRT is implemented, the other is the situation without SRT where the risk of crises and cascading risk is high, as it is in reality now. This is based on firm mathematical grounds. “We adapted and proved results inspired by the study of ‘matching markets,’ which allows us to capture mathematically the matchmaking processes between lenders and borrowers. With this method we can arrive at networks that are optimally resilient,” says Leduc.

Thurner has previously presented the research to policymakers and central bankers in the EU and Mexico. The new study is essentially one further step from research into policy, but a systemic risk tax still has a long way to go to become reality. In order to implement such a tax, regulators need expansive, up-to-date information about the current state of the interbank network. In fact, this information is already available and accessible to regulators. The bigger question may be how banks would behave in reality under the proposed tax.

“We need to explore how real banks will behave when faced with such a tax, and how they will change their behavior in response. The idea is to make banks aware and responsible for the externalities of systemic risk they are creating. Of course this will create opportunity costs as banks might create systemic risk departments. However, these are negligible costs in comparison to the costs of financial crises, or implementation costs of Basel III, which will effectively not reduce systemic risk,” explains Thurner.

Leduc MV and Thurner S (2017). Incentivizing resilience in financial networks. Journal of Economic Dynamics and Control 82 44-66. [pure.iiasa.ac.at/14630/]

About IIASA:
The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, Europe, and Oceania. www.iiasa.ac.at

Weitere Informationen:

http://pure.iiasa.ac.at/14630/

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: Analysis Economic IIASA SRT bank failures financial crisis financial system networks risk systemic

More articles from Business and Finance:

nachricht Microtechnology industry is hiring – positive developments of past years continue
09.04.2018 | IVAM Fachverband für Mikrotechnik

nachricht RWI/ISL-Container Throughput Index with minor decline on a high overall level
20.03.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>