Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeppelin NT Flies for European Climate Research -Jülich researchers measure air quality over Europe

17.11.2011
The test programme began in Friedrichshafen this week: Jülich climatologists are testing and optimizing the measuring equipment in preparation for the largest research application ever of a Zeppelin NT, starting in May 2012.

At that time, the airship will undertake a number of flight missions, each lasting several weeks, coordinated by Jülich researchers. These missions aim to study the atmosphere over the Netherlands, Italy, the Mediterranean Sea, and finally Finland in 2013. The campaign is part of the EU’s PEGASOS project, in which 26 partners from 15 European nations are studying the relationships between atmospheric chemistry and climate change.

The researchers in Friedrichshafen will fit three different sets of measuring instruments into the interior of the airship and test their function during flights. Beginning in May, these instruments are then intended to gather data on the atmosphere’s ability to clean itself, among other aspects of interest. In this regard, special attention will be paid to the atmosphere’s “detergent”, known chemically as the hydroxyl (OH) radical. This radical initiates the breakdown of most pollutants and thus serves as a measure of the atmosphere’s cleaning capacity. In its turn, it is also recycled in a natural loop. However, regarding this recycling theory, Jülich researchers have discovered several anomalies in the last few years. The airship flights are intended to explain these anomalies, since they are at precisely the altitudes where such processes take place. Other questions relate to the phenomenon of suspended particles: What are their origins? How to they agglomerate to form larger particles? What chemical and physical effects do they have on climate and air quality? And what part do they play in recycling the natural detergent?

The Zeppelin NT will be accompanied on its mission by an international team of 15 scientists and technicians. Its first flight in 2012 will take it to Cabauw in the Netherlands for two weeks, followed in June by at least five weeks in Italy, where measurements will be taken over the Po Valley and the Adriatic Sea in cooperation with Italian scientists. Then in April 2013, the atmosphere researchers will set off on a two-month expedition to northern Europe; their final destination being Hyytiälä in Finland. Both the flight paths and the measuring locations are coordinated with existing ground measuring stations. This will enable the researchers to compare data from the flight directly with measurements from fixed locations.

The unique flight characteristics of the Zeppelin NT mean that is ideally suited to complement aircraft and fixed ground stations. It can float slowly, hover, climb and descend vertically, fly for up to 24 hours, all while carrying measuring instrumentation weighing more than a tonne. This will enable the Jülich team to conduct a precise examination of the distribution of trace gases in a region up to an altitude of 1000 metres, known as the planetary boundary layer. Until now, little research has been carried out in this region, which is chemically highly reactive and where the fate of most pollutants emitted from the Earth’s surface is decided. It is therefore essential to collect information in order to gain a detailed understanding of atmospheric processes and to test conceptual models.

The EU’s PEGASOS project (Pan-European-Gas-AeroSOl-Climate Interaction Study) is funded by the European Commission under the auspices of the Seventh Framework Programme. The purpose of the campaign is to measure the effect of atmospheric chemistry on climate change and to identify the critical processes. The results would then provide the scientific bases for determining EU-wide climate protection measures, thus improving air quality taking into account effects on climate change. The research will also be available for global climate policy, since most of the project partners are also involved in the work of the United Nations Intergovernmental Panel on Climate Change (IPCC).

Contacts:

Forschungszentrum Jülich
Prof. Dr. Andreas Wahner
Institute of Energy and Climate Research, Troposphere (IEK-8)
Tel: +49 2461 61-5932
Email: a.wahner@fz-juelich.de
PD Dr. Astrid Kiendler-Scharr
Institute of Energy and Climate Research, Troposphere (IEK-8)
phone: +0049 (0)2461 61-4185
Email: a.kiendler-scharr@fz-juelich.de
PD Dr. Thomas Mentel
Institute of Energy and Climate Research, Troposphere (IEK-8)
phone: +0049 (0)2461 61-6921
Email: t.mentel@fz-juelich.de
Press contacts:
Erhard Zeiss, Dr. Barbara Schunk
Tel. +49 2461 61 -1841/-8031
Email: e.zeiss@fz-juelich.de, b.schunk@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Further information:
http://www.fz-juelich.de

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>