New Zealand Earthquake Reveals Vulnerability of Many U.S. Urban Centers

“The earthquake was actually an aftershock associated with the 7.1 magnitude Darfield earthquake that occurred about 15 km west of Christchurch on Sept. 4, 2010. Since then, aftershocks have been occurring on the Greendale Fault, the causative fault, and progressing toward the Christchurch central business district. The relatively shallow depth of the earthquake below the city shows that even 5 to 10 seconds of strong shaking can have devastating effects.

“Some reasons for the serious damage are the many unreinforced masonry buildings in Christchurch and the occurrence of soil liquefaction throughout the city. Soil liquefaction is the transformation of saturated granular soil into a liquid-like substance from high groundwater pressures triggered by strong shaking. The soil liquefaction in Christchurch has damaged many miles of underground water mains, sewers, and electric power cables, and damaged several bridges.

“Many U.S. cities in areas vulnerable to earthquakes have many unreinforced masonry buildings, like those in Christchurch, and are founded on liquefiable soils.”

–Thomas D. O’Rourke, an expert on the impact of earthquakes on infrastructure and Professor of Civil and Environmental Engineering at Cornell University

Media Contact

Joe Schwartz Newswise Science News

More Information:

http://www.cornell.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors