Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU researchers document one of planet's largest volcanic eruptions

12.10.2017

Gases from Inland Northwest blocked out sun, cooling planet

Washington State University researchers have determined that the Pacific Northwest was home to one of the Earth's largest known volcanic eruptions, a millennia-long spewing of sulfuric gas that blocked out the sun and cooled the planet.


The Palouse River in southeastern Washington State drops nearly 200 feet through cliffs of basalt created by scores of lava flows 10 to 16 million years ago. Washington State University researchers have determined that one flow constituted one of the Earth's largest known volcanic eruptions, a millennia-long spewing of sulfuric gas that blocked out the sun and cooled the planet.

Credit: Dean Hare, WSU Photo Services

Only two other eruptions -- the basalt floods of the Siberian Traps and the Deccan Traps -- were larger, and they led to two of the Earth's great extinctions.

"This would have been devastating regionally because of the acid-rain effect from the eruptions," said John Wolff, a professor in the WSU School of the Environment. "It did have a global effect on temperatures, but not drastic enough to start killing things, or it did not kill enough of them to affect the fossil record."

The research, which was funded by the National Science Foundation, appears in Geology, the top journal in the field. Starting 16.5 million years ago, they say, vents in southeast Washington and northeast Oregon put out a series of flows that reached nearly to Canada and all the way to the Pacific Ocean. The flows created the Wapshilla Ridge Member of the Grande Ronde Basalt, a kilometer-thick block familiar to travelers in the Columbia Gorge and most of Eastern Washington. The researchers say it is "the largest mapped flood basalt unit on Earth."

The researchers estimate that, over tens of thousands of years, the floods put out between 242 and 305 billion tons of sulfur dioxide. That's more than 4,000 times the output of the 1815 Mount Tambora eruption in present-day Indonesia. That eruption blanketed the Earth in an aerosol veil, creating the "Year Without A Summer" and food shortages across the northern hemisphere.

The volume of gas emitted from the Wapshilla Ridge lavas, said the researchers, "is equivalent to a Tambora eruption every day for 11 to 16 years."

Most of the lava's gases were released during the eruptions, but some of the gas remained trapped in crystals near the volcanic vents. Klarissa Davis, lead author of the paper, analyzed the gases as part of her doctoral studies. The other authors are Michael Rowe, now at the University of Auckland, and Owen Neill, now at the University of Michigan.

Wolff puts the eruption into one of three classes of cataclysms, the other two being a caldera eruption like the Yellowstone volcano and the impact of an asteroid. A similar eruption today "would devastate modern society globally," said Wolff.

The eruption also provides an insight into the workings of climate change. It took place in what is known as the Miocene Climactic Optimum, or MCO, when some 50 million years of cooling was interrupted by 5 to 6 degrees Fahrenheit of warming. But at its peak, the MCO had a brief cooling period that coincides with the Wapshilla eruption and its profusion of sulfur dioxide.

Sulfur dioxide is now bandied about as a possible tool for engineering a break in the Earth's current warming trend, though Wolff is not particularly keen on the idea.

"I personally think that it's probably a dangerous thing to do without understanding all of the possible consequences," he said. "But maybe we're getting an idea of some possible consequences here."

Media Contact

John Wolff
jawolff@wsu.edu
509-335-2825

 @WSUNews

http://www.wsu.edu 

John Wolff | EurekAlert!

More articles from Earth Sciences:

nachricht Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
21.10.2019 | University of British Columbia

nachricht Strong storms generating earthquake-like seismic activity
16.10.2019 | Florida State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Phagocytes versus killer cells - A closer look into the tumour tissue

21.10.2019 | Life Sciences

A new stable form of plutonium discovered at the ESRF

21.10.2019 | Physics and Astronomy

Candidate Ebola vaccine still effective when highly diluted, macaque study finds

21.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>