Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU researcher sees huge carbon sink in soil minerals

08.11.2017

Finding opens new avenue for offsetting rising greenhouse gases

A Washington State University researcher has discovered that vast amounts of carbon can be stored by soil minerals more than a foot below the surface. The finding could help offset the rising greenhouse-gas emissions helping warm the Earth's climate.


A Washington State University researcher has discovered that vast amounts of carbon can be stored by soil minerals more than a foot below the surface. The finding could help offset the rising greenhouse-gas emissions helping warm the Earth's climate.

Credit: Biogeochemistry Letters

Marc Kramer, an assistant professor of environmental chemistry at WSU Vancouver, reports his finding in one of two related papers demonstrating how the right management practices can help trap much of the carbon dioxide that is rapidly warming the planet.

Soil holds more than three times the carbon found in the atmosphere, yet its potential in reducing atmospheric carbon-dioxide levels and mitigating global warming is barely understood.

Kramer, who is a reviewer for one of three reports issued with the federal National Climate Assessment released last week, compared what we know about soil to how little we know about the deep ocean.

"Hardly anyone has been down there and they just found a new species of octopus" he said. "We know more about the surface of Mars than we do about either oceans or soils on Earth"

Half of global soil carbon

Writing with colleagues from Stanford, Oregon State University and elsewhere in Annual Review of Ecology, Evolution and Systematics, Kramer said more than half of the global soil carbon pool is more than a foot beneath the surface. He also found that soil organic matter at that depth is almost entirely associated with minerals.

Kramer elaborates on the connection this week in the journal Biogeochemistry Letters. His study, which he led with colleagues from Oregon State University and the Stroud Water Research Center in Pennsylvania, is the first to explicitly examine the extent minerals control nitrogen and carbon deep in the soil.

Keeping carbon in the ground

The more we understand these processes, the more we can tailor farming and other practices to keep carbon in the ground and out of the atmosphere, Kramer said. Almost three-fourths of all carbon sequestered in the top three feet of the soil is affected by agriculture, grazing or forest management, Kramer and his colleagues report in the Annual Review paper.

Earlier research by Kramer found that certain farming practices can dramatically increase carbon in the soil. Writing in Nature Communications in 2015, Kramer documented how three farms converted to management-intensive grazing practices raised their carbon levels to those of native forest soils in just six years. While cultivation has decreased soil carbon levels by one-half to two-thirds, the soils he examined had a 75 percent increase in carbon.

"I would call it radical, anytime you can get that much carbon in the system that quickly," Kramer said.

Knowing more about how soil stores carbon can open the door to new techniques that will entrain carbon deep into the soil while continuing to produce food and fiber.

"Don't forget, we need to double food production in the next 40 years," Kramer said.

Media Contact

Marc Kramer
marc.kramer@wsu.edu
360-546-9788

 @WSUNews

http://www.wsu.edu 

Marc Kramer | EurekAlert!

More articles from Earth Sciences:

nachricht The seafloor of Fram Strait is a sink for microplastic from the Arctic and North Atlantic Ocean
30.03.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht New 3D view of methane tracks sources
25.03.2020 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>