Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU researcher sees huge carbon sink in soil minerals

08.11.2017

Finding opens new avenue for offsetting rising greenhouse gases

A Washington State University researcher has discovered that vast amounts of carbon can be stored by soil minerals more than a foot below the surface. The finding could help offset the rising greenhouse-gas emissions helping warm the Earth's climate.


A Washington State University researcher has discovered that vast amounts of carbon can be stored by soil minerals more than a foot below the surface. The finding could help offset the rising greenhouse-gas emissions helping warm the Earth's climate.

Credit: Biogeochemistry Letters

Marc Kramer, an assistant professor of environmental chemistry at WSU Vancouver, reports his finding in one of two related papers demonstrating how the right management practices can help trap much of the carbon dioxide that is rapidly warming the planet.

Soil holds more than three times the carbon found in the atmosphere, yet its potential in reducing atmospheric carbon-dioxide levels and mitigating global warming is barely understood.

Kramer, who is a reviewer for one of three reports issued with the federal National Climate Assessment released last week, compared what we know about soil to how little we know about the deep ocean.

"Hardly anyone has been down there and they just found a new species of octopus" he said. "We know more about the surface of Mars than we do about either oceans or soils on Earth"

Half of global soil carbon

Writing with colleagues from Stanford, Oregon State University and elsewhere in Annual Review of Ecology, Evolution and Systematics, Kramer said more than half of the global soil carbon pool is more than a foot beneath the surface. He also found that soil organic matter at that depth is almost entirely associated with minerals.

Kramer elaborates on the connection this week in the journal Biogeochemistry Letters. His study, which he led with colleagues from Oregon State University and the Stroud Water Research Center in Pennsylvania, is the first to explicitly examine the extent minerals control nitrogen and carbon deep in the soil.

Keeping carbon in the ground

The more we understand these processes, the more we can tailor farming and other practices to keep carbon in the ground and out of the atmosphere, Kramer said. Almost three-fourths of all carbon sequestered in the top three feet of the soil is affected by agriculture, grazing or forest management, Kramer and his colleagues report in the Annual Review paper.

Earlier research by Kramer found that certain farming practices can dramatically increase carbon in the soil. Writing in Nature Communications in 2015, Kramer documented how three farms converted to management-intensive grazing practices raised their carbon levels to those of native forest soils in just six years. While cultivation has decreased soil carbon levels by one-half to two-thirds, the soils he examined had a 75 percent increase in carbon.

"I would call it radical, anytime you can get that much carbon in the system that quickly," Kramer said.

Knowing more about how soil stores carbon can open the door to new techniques that will entrain carbon deep into the soil while continuing to produce food and fiber.

"Don't forget, we need to double food production in the next 40 years," Kramer said.

Media Contact

Marc Kramer
marc.kramer@wsu.edu
360-546-9788

 @WSUNews

http://www.wsu.edu 

Marc Kramer | EurekAlert!

More articles from Earth Sciences:

nachricht NASA, NOAA analyses reveal 2019 second warmest year on record
16.01.2020 | NASA/Goddard Space Flight Center

nachricht New assessment of gas locked in ice in European waters
16.01.2020 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>