Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The World highest monitoring station for measuring atmospheric composition change

24.04.2012
For the first time, an atmospheric observatory provides data on the composition of the free troposphere in the tropics in the southern hemisphere on a seasonal to annual basis.
The new atmospheric observatory at Mt. Chacaltaya (CHC) in Bolivia is at an altitude of 5240 meters and is the highest such station in the world. First data are available now and will be presented by scientists at the annual meeting of the European Geosciences Union (EGU) in Vienna. The old altitude record was held by the Nepal Climate Observatory - Pyramid situated at an altitude of 5079 meters near the base camp of Mount Everest in the Himalayas.

A number of research groups from France (Grenoble University/LGGE, Laboratoire des Sciences du Climat et de l’Environnement/LSCE and Laboratoire de Météorologie Physique/LaMP), Italy (Institute of Atmospheric Sciences and Climate/ISAC), Germany (Leibniz Institute for Tropospheric Research/IfT), Sweden (Stockholm University/SU) and Switzerland (Paul Scherrer Institute/PSI) have combined their efforts to support the initiative led by the Universidad Mayor de San Andres (UMSA-LFA) to install this unique infrastructure for documenting the variability of the atmospheric composition at Mt. Chalcaltaya.

The new atmospheric observatory at Mt. Chacaltaya (CHC) in Bolivia is at an altitude of 5240 meters and is the highest such station in the world.
Photo: Kay Weinhold/IfT

The US NASA Goddard Space Flight Center has joined this group of institutions by helping the LIDAR group at the LFA in implementing a fully functional lidar system in Cota-Cota, at only 22 km in straight line, from Chacaltaya. For this region, information on the atmospheric composition is largely unknown due to the lack of observations. Measurements at the station started in December 2011 and include monitoring of gases (CO2, CO and O3), characterization of aerosol particle properties (absorption and scattering coefficients, number size distribution, chemical composition, and small ions) as well as radiation and meteorology. Aerosol lidar measurements are made from La Paz in support of the overall research effort. The CHC station is part of the WMO-GAW network.

South America is facing dramatic environmental changes linked to deforestation over the Amazon Basin driven primarily by agricultural expansion and logging. Biomass burning activities resulting nowadays dominantly from anthropogenic land-use change are potent sources of CO2 and several Short Lived Climate Forcers (SLCFs). Tropical deep convection introduces both biogenic and pyrogenic aerosols into the free troposphere, where, thanks to a lifetime on the order of weeks, aerosol particles can be transported over long-distances with nearly global impact. The presence of high aerosol loads over the Bolivian Altiplano will likely influence local/regional radiative balance, but also may exert a strong impact on the strength of the convective circulation and hence the precipitation patterns in the arid Altiplano region.

The lack of availability of climate and atmospheric data in the region remains, however, a strong constraint on both Climate and Chemistry-Transport modeling efforts.Mt. Chacaltaya is in the Cordillera Real, a mountain chain in the Andean highlands of Bolivia. The peak reaches 5421 meters above sea level. The mountain has long been considered the highest ski area in the world. After the disappearance of the glacier, skiing, however, was terminated. In good weather the view extends to the Titicaca Lake and 30 kilometers to La Paz.

The observatory, which is accessible by car, is situated at 5240 meters, just below the summit.. The mountain has already gone down in the history of science: Since the 1940s, there was an observatory for cosmic radiation at the site. The British physicist Cecil Frank Powell, collaborating with the young Brazilian physicist César Lattes, worked on the development of a photographic method for studying of atomic processes, which led to the discovery of the pion.

In recent years, the station was expanded to atmospheric research that began in 2010 and is now part of the "Global Atmosphere Watch Programme" (GAW) of the World Meteorological Organization (WMO). It observes the evolution of the atmosphere to investigate the effects of global change. Aerosol particles, often colloquially referred to as particulate matter, play a large role in the Earth's climate. They absorb and scatter solar radiation. In addition, aerosol particles act as cloud condensation nuclei. The aim of the monitoring network is to monitor the chemical composition of the atmosphere, aerosol particles and long-term physical parameters at a high level of quality.

The data obtained are freely available to the scientific community. They are among others used for the study of atmospheric trends for improved predictive models, for the ground calibration of satellite measurements and for discussion and assessment in climate policies.

Publication/Presentation:
First atmospheric observations from the high altitude Chacaltaya GAW station (Bolivia - 5200 m)
http://meetingorganizer.copernicus.org/EGU2012/EGU2012-10350.pdf
(EGU2012, Vienna, Wednesday, 25 Apr 2012, 08:30–08:45 AM)

Contact:
Dr. Marcos Andrade, Universidad Mayor de San Andres, La Paz, Bolivia
http://www.atmos.umd.edu/~mandrade/resume/resume.html

Dr. Paolo Laj, Grenoble University - CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Grenoble, France
http://lgge.osug.fr/article166.html

Prof. Alfred Wiedensohler, Leibniz Institute for Tropospheric Research, Leipzig, Germany
http://www.tropos.de/info/wiedensohler_a.pdf

Links:
Estación Regional GAW de Chacaltaya:
http://www.chacaltaya.edu.bo/index.php?option=com_content&view=category&layout=blog&id=42&Itemid=69
http://orion.scienceontheweb.net/flash/index.html

Global Atmosphere Watch (GAW) of WMO:
http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html

Institutes:
Universidad Mayor de San Andres (UMSA-LFA):
http://www.lfabolivia.org/
Laboratoire des Sciences du Climat et de l’Environnement (LSCE):
http://www.lsce.ipsl.fr/
Laboratoire de Météorologie Physique (LaMP):
http://wwwobs.univ-bpclermont.fr/atmos/fr/index.php
Institute of Atmospheric Sciences and Climate (ISAC):
http://www.isac.cnr.it/
Leibniz Institute for Tropospheric Research (IfT):
http://www.tropos.de/
Stockholm University (SU):
http://www.misu.su.se/
Paul Scherrer Institute (PSI):
http://www.psi.ch/lac/
l’Institut de recherche pour le développement (IRD):
http://www.bo.ird.fr/spip.php?page=rubrique_accueil&id_rubrique=334&titre_mot_rub=accueil
NASA/Goddard Space Flight Center (GSFC)
http://www.nasa.gov/centers/goddard/home/index.html

Tilo Arnhold | idw
Further information:
http://www.tropos.de/

More articles from Earth Sciences:

nachricht Huge stores of Arctic sea ice likely contributed to past climate cooling
21.02.2020 | University of Massachusetts Amherst

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>