Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first system forecasts warming of lakes globally

09.03.2020

Research will enable better predictions of the impact of climate change on surface water temperatures and ecology

A groundbreaking study will enable scientists to better predict future warming of the world's lakes due to climate change, and the potential threat to cold-water species such as salmon and trout.


Lakes with similar seasonal patterns of surface water temperatures are grouped together in a thermal region. The range in terms of relative temperature is from frigid, to cool, to temperate, to warm, to hot. Tropical Hot, in red, on and around the Equator, is the hottest of the nine thermal regions.

Credit: Maberly et. al

Pioneering research led by the UK Centre for Ecology & Hydrology (UKCEH) has devised the first system that classifies lakes globally, placing each of them in one of nine 'thermal regions' (see map).

Lakes are grouped depending on their seasonal patterns of surface water temperatures, with the coldest thermal region including lakes in Alaska, Canada, northern Russia and China, and the warmest covering lakes in equatorial South America, Africa, India and south-east Asia.

By incorporating climate change models, the scientists predict that by the year 2100, for the most extreme climate change scenario, average lake temperature will be around 4 degrees Celsius warmer and that 66 per cent of lakes globally will be classified in a warmer thermal region than they are now.

The study - carried out by UKCEH, the Universities of Dundee, Glasgow, Reading and Stirling, plus the Dundalk Institute of Technology - was funded by the Natural Environment Research Council (NERC) and has been published in the journal Nature Communications.

Professor Stephen Maberly of UKCEH, lead author of the study, explains: "Thanks to cutting-edge analysis using satellite images of more than 700 lakes, taken twice a month over 16 years, we produced the first global lake temperature classification scheme. By combining this with a lake model and climate change scenarios we were able to identify that northern lakes, such as those in the UK, will be particularly sensitive to climate change."

Even relatively small changes in temperature can have a significant negative impact on aquatic wildlife, affecting the speed at which organisms grow and feed, and when they reproduce. As species do not react in the same way, prey and predators have increasingly different breeding and feeding cycles, reducing the amount of potential food available.

Warming also increases the risk of harmful algal blooms, which can have a negative impact on aquatic plants and fish.

Professor Maberly says: "Cold-water fish species in particular can be stressed by warmer temperatures. The potential negative impact on salmonids such as salmon, trout and Arctic charr, for example, is concerning because they play a central ecological role within food webs and also have great economic importance."

The research is aimed at scientists interested in freshwater ecology, climate change, greenhouse gas emissions and biogeochemical cycles.

Professor Andrew Tyler of the University of Stirling, who led the overall project, GloboLakes, says: "This is an example of pioneering UK-led research that has delivered the capability to monitor our inland waters at the global scale from satellite based platforms.

"This is not only yielding new insights into the impacts of climate change, but also the evidence base from which to better manage these ecologically sensitive environments and mitigate against the effects of change."

An app to classify lakes into the nine thermal regions is available in the R programming language at GitHub - https://github.com/ruth-odonnell/LakeThermalRegions/

###

NOTES TO EDITORS

Paper information

Stephen C. Maberly, Ruth A. O'Donnell, R. Iestyn Woolway, Mark E. J. Cutler, Mengyi Gong, Ian D. Jones, Christopher J. Merchant, Claire A. Miller, Eirini Politi, E. Marian Scott, Stephen J. Thackeray, Andrew N. Tyler. 2020. Global lake thermal regions shift under climate change. Nature Communications. DOI: 10.1038/s41467-020-15108-z

For media enquiries

For interviews and further information, please contact Simon Williams, Media Relations Officer at UKCEH, via simwil@ceh.ac.uk or +44 (0)7920 295384.

About the UK Centre for Ecology & Hydrology (UKCEH)

The UK Centre for Ecology & Hydrology is a centre for excellence in environmental science across water, land and air. Our 500 scientists work to understand the environment, how it sustains life and the human impact on it - so that together, people and nature can prosper.

We have a long history of investigating, monitoring and modelling environmental change, and our science makes a positive difference in the world. The issues our science addresses include: air pollution, biodiversity, biosecurity, chemical risks, extreme weather events, droughts, floods, greenhouse gas emissions, land use, soil health, sustainable agriculture, sustainable ecosystems, sustainable macronutrient use, and water resources management.

The UK Centre for Ecology & Hydrology is a strategic delivery partner for the Natural Environment Research Council, part of UK Research and Innovation. http://www.ceh.ac.uk / @UK_CEH

Media Contact

Simon Williams
simwil@ceh.ac.uk
07-920-295-384

UK Centre for Ecology & Hydrology
@UK_CEH

Simon Williams | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-020-15108-z

Further reports about: Environment Research greenhouse gas emissions satellite

More articles from Earth Sciences:

nachricht Typhoon changed earthquake patterns
03.07.2020 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht Groundwater protection on Spiekeroog Island - first installation of a salt water monitoring system
01.07.2020 | Leibniz-Institut für Angewandte Geophysik (LIAG)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>