Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's Largest Tornado Experiment Heads for Great Plains

06.05.2009
The largest and most ambitious tornado study in history will begin next week, as dozens of scientists deploy radars and other ground-based instruments across the Great Plains to gain a better understanding of these often-deadly weather events.

The collaborative international project, involving scientists from the National Center for Atmospheric Research (NCAR) and a number of other organizations, will examine in detail how tornadoes form and the patterns of damage they cause. The findings are expected to improve tornado warnings and short-term severe weather forecasts.

The field campaign, known as VORTEX2 (Verification of the Origins of Rotation in Tornadoes EXperiment 2), will run from May 10 to June 13. A second phase is planned for the spring of 2010.

"We still do not completely understand the processes that lead to tornado formation and shape its development," says Roger Wakimoto, director of NCAR's Earth Observing Laboratory and a principal investigator for VORTEX2. "We hope that VORTEX2 will provide the data we need to learn more about the development of tornadoes and in time help forecasters give people more advance warning before a tornado strikes."

The $11.9 million VORTEX2 program is funded primarily by the National Science Foundation, which sponsors NCAR, and by the National Oceanic and Atmospheric Administration.

In addition to NCAR, participants include the Center for Severe Weather Research, Rasmussen Systems, NOAA National Severe Storms Laboratory, NOAA Cooperative Institute for Mesoscale Meteorological Studies at the University of Oklahoma, Pennsylvania State University, University of Oklahoma, Texas Tech University, Lyndon State College, University of Colorado, Purdue University, North Carolina State University, University of Illinois, University of Massachusetts, University of Nebraska, Environment Canada, and the Australian Bureau of Meteorology.

The crucial zone

The first VORTEX project, conducted in 1994 and 1995, gathered critical data on supercells, the severe and long-lived thunderstorms that give birth to the most destructive and deadly tornadoes. VORTEX findings are credited for improving National Weather Service tornado warnings, which now have a lead time of about 13 minutes.

Building on that progress, VORTEX2 researchers will use enhanced mobile radars and other new weather-sensing tools to gather far more detail on the crucial zone where tornadoes develop. Rapidly changing contrasts in wind and temperature in this zone, which is only a few miles across, can spawn a tornado within minutes. However, such an event happens in only a small fraction of supercell storms, and standard observing networks and radars often fail to capture the atmospheric conditions that lead to a tornado.

"VORTEX2 will help us better understand the difference between thunderstorms that produce tornadoes and those that don't," says NCAR scientist David Dowell, a VORTEX2 field coordinator. "By identifying the characteristics of severe thunderstorms that produce tornadoes, forecasters will be able to issue tornado warnings further in advance and potentially save lives."

Probing a vast region with high-tech tools

The radar fleet for VORTEX2, including 10 mobile radars, will track winds and precipitation in and near tornadoes in unprecedented detail. The instruments will have a resolution as fine as 300 feet and time steps as small as 15 seconds. More than three dozen portable surface weather stations will blanket the area in and near a target storm.

The VORTEX2 study area spans more than 900 miles, stretching from west Texas to southwest Minnesota. On each day of operations, participants will position equipment about an hour ahead of a potentially tornadic storm and remain in place until the storm arrives. NOAA forecasters and partners will provide intensive guidance on short-fuse weather events as each day unfolds.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

On the Web:

VORTEX2:
http://www.vortex2.org
Reports on each day's findings:
http://www.eol.ucar.edu/projects/vortex2/

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu
http://www.ucar.edu/news/releases/2009/vortex2.jsp

More articles from Earth Sciences:

nachricht Tiny satellites reveal water dynamics in thousands of northern lakes
15.02.2019 | Brown University

nachricht Artificial Intelligence to boost Earth system science
14.02.2019 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>