Witnesses wanted….and found

Deposits in lakes and seas contain a wealth of information related to the environ-mental conditions prevalent during their genesis. Thus, they are an unfailing archive, particularly with regard to paleo-environmental conditions, for environmental and climate scientists. Now, the fine art is to interpret the derived data correctly.

For this purpose, geoscientists often use “witnesses” or proxies. Widely known witnesses from sediments are fossils, the remains of plants and animals. By comparisons with their well-studied living relatives, ideas about the conditions that predominated at the time of sediment deposition can be deduced. Minerals potentially offer further valuable insights but only if the environmental circumstances present at the time of their formation have been deciphered.

A team of researchers from Germany, Austria and Spain, under the co-ordination of geochemists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) has now succeeded in reproducing the formation of a BaMn-double carbonate originally found in sediments from the oxygen-deficient region of the Landsort Deep in the laboratory, and thus to elucidate the environmental conditions that gave birth to it. This carbonate, which has yet to be named, serves as a mineral witness for future research to hone in on very specific biogeochemical processes and environmental conditions.

„Sediments in which barium-manganese carbonate are found contain dissolved methane“says Michael E. Böttcher, the leading scientist. “We were able to demonstrate that the prerequisite for the genesis of this carbonate was the microbial decomposition of sulfate and the destruction of barium and manganese minerals stemming from the water column. Methane seems to be involved in these processes.” The consortium around Michael Böttcher used a broad range of methods resulting in a detailed characterization of the carbonate enable its unmistakable detection in other locations.

Thus, wherever this new mineral witness is found, additional important information on the environmental conditions at the time of the carbonate's deposition will be revealed, thanks to the fundamental work of the Warnemünde-based geochemists and their co-workers. The word is out – the search can begin.

These results were published in:
Böttcher, M. E., H. S. Effenberger, P.-L. Gehlken, G. H. Grathoff, B. C. Schmidt, P. Geprägs, R. Bahlo, O. Dellwig, T. Leipe, V. Winde, A. Deutschmann, A. Stark, D. Gallego-Torres and F. Martinez-Ruiz (2012). BaMn[CO3]2 – a previously unrecognized double carbonate in low-temperature environments: structural, spectroscopic, and textural tools for future identification. CdE – Geochemistry 72: 85-89, doi:10.1016/j.chemer.2012.01.001

Contact:
Prof. Dr. Michael E. Böttcher, Department Marine Geology,
phone: +49 381 5197 402, email: michael.boettcher@io-warnemuende.de

Dr. Barbara Hentzsch, science management and public relation,
phone: +49 381 5197 102, email: barbara.hentzsch@io-warnemuende.de

Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, D-18119 Rostock

The IOW is a member of the Leibniz Association, which currently includes 86 research insti-tutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.

Media Contact

Dr. Barbara Hentzsch idw

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors