Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildfires bring climate’s dark forcings to the stratosphere

27.11.2018

Large amounts of black carbon particles from wildfires reach the stratosphere where they can induce strong local heating and thus influence regional climate.

Wildfires, like those currently in California, have a large environmental impact. Uncontrolled blazes can burn tens of thousands of acres, destroy vegetation and settlements, and severely affect local and regional air quality.


The fires in Southern California. Photo: NASA/Earth Observation

An international team of scientists, led by Yafang Cheng and Hang Su from the Max Planck Institute for Chemistry in Mainz, have now found that wildfire impact on the atmosphere may be even stronger than previously thought.

The researchers discovered that large amounts of soot, which contains a lot of black carbon and is released by wildfires, can be transported through the troposphere up to the lowermost stratosphere around 10 kilometers altitude.

Black carbon is the most strongly light-absorbing aerosol material from fires and is regarded as one of the most important individual climate-warming agents.

The black carbon concentrations in fire plumes were over 20 times higher than in the background atmosphere, and most black carbon particles were covered with a thick coating of other chemical substances enhancing their light absorption.

The high concentrations and thick coating of black carbon particles imply a strong local heating in the lowermost stratosphere that may substantially influence regional climate. The results of the study have just been published in PNAS, the scientific journal of the U.S. National Academy of Sciences.

To gather the data, the scientists integrated a specially-designed Single Particle Soot Photometer (SP2) into an airfreight container on-board an Airbus A340-600 from Germany’s Lufthansa airline. The SP2 can detect individual soot particles and determine the concentration and coating of black carbon aerosols.

The study analyzed measurements that took place during 22 flights between Europe and North America from August 2014 to October 2015, including sampling over a total of 230 flight hours, mostly at altitudes in the range of 10 to 12 km. The research was part of the CARIBIC project* that pursues an innovative approach to study atmospheric composition, chemical and physical processes, and climate change with the help of passenger aircraft.

“In the stratosphere, a black carbon particle can have a much stronger effect on climate than at lower altitudes because of more intense solar radiation, further enhancement from the back-scattering of clouds, and long particle residence times,” says Yafang Cheng, principal investigator of the CARIBIC-SP2 black carbon project and leader of an independent Minerva research group at the Max Planck Institute for Chemistry.

“Via deep convection and specific weather conditions, wildfire emissions can be transported into the lowermost stratosphere, where we have gathered high-quality measurement data during a large number of intercontinental flights,” adds Jeannine Ditas, a postdoctoral researcher in Cheng’s group, who worked on the SP2 measurements.

Extended warm seasons, drier soils and vegetation, and changing precipitation patterns are leading to more frequent wildland fires with increased duration and intensity in many parts of the world. “Long-term and wide-range measurements are essential to quantify how wildfires affect the atmosphere and improve our understanding of current and future climate change,” states Cheng.

“As a next step, we plan to extend the observations to Africa and Asia, where wildfires are very common,” adds Hang Su, a co-investigator, research group leader at the Max Planck Institute for Chemistry and Professor at Jinan University in Guangzhou, China. Further analyses of the measurement data will address the fate of aerosols in the stratosphere and their interactions with clouds.

* CARIBIC - Civil Aircraft for the regular Investigation of the atmosphere Based on an Instrument Container, part of the In-service Aircraft for a Global Observing System (IAGOS) European Research Infrastructure.
The IAGOS-CARIBIC project is operated by the following partners:
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, Max Planck Institute for Chemistry (MPIC), Mainz, Germany, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany, University of East Anglia (UEA) Norwich, Great Britain, Royal Netherlands Meteorological Institute (KNMI), de Bilt, the Netherlands, University of Lund, Lund, Sweden, University of Bern, Bern, Switzerland, Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette, France, Helmholtz Zentrum Geesthacht, (HZG), Geesthacht, Germany, Institut für Umweltphysik, Universität Heidelberg (IUP), Heidelberg, Germany, Institute for Reference Materials and Measurements (IRMM), Geel, Belgium, Deutsche Lufthansa AG (DLH), Köln, Germany, Enviscope GmbH, Frankfurt, Germany, European Aeronautic Defence and Space company N.V. (EADS), München, Germany, aircraft electronic engineering gmbh (AEE), Seefeld, Germany

Wissenschaftliche Ansprechpartner:

Dr. Yafang Cheng
Max Planck Institute for Chemistry Mainz
Telephone: +49(6131)305-7200
E-Mail: yafang.cheng@mpic.de

Dr. Hang Su
Max Planck Institute for Chemistry Mainz
Telephone: +49(6131)305-7300
E-Mail: h.su@mpic.de

Originalpublikation:

Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere

Jeannine Ditas, Nan Ma, Yuxuan Zhang, Denise Assmann, Marco Neumaier, Hella Riede, Einar Karu, Jonathan Williams, Dieter Scharffe, Qiaoqiao Wang, Jorge Saturno, Joshua P. Schwarz,
Joseph M. Katich, Gavin McMeeking, Andreas Zahn, Markus Hermann, Carl A. M. Brenninkmeijer, Meinrat O. Andreae, Ulrich Pöschl, Hang Su and Yafang Cheng

PNAS, doi/10.1073/pnas.1806868115

www.pnas.org/cgi/doi/10.1073/pnas.1806868115

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht New findings on the largest natural sulfur source in the atmosphere
18.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Turbulence creates ice in clouds
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Researchers discover a new way in which insulin interacts with its receptor

18.11.2019 | Life Sciences

Bacterial protein impairs important cellular processes

18.11.2019 | Life Sciences

A better understanding of soft artificial muscles

18.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>