Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Antarctic warming triggered by warmer sea surface in tropical Pacific

11.04.2011
The Antarctic Peninsula has warmed rapidly for the last half-century or more, and recent studies have shown that an adjacent area, continental West Antarctica, has steadily warmed for at least 30 years, but scientists haven't been sure why.

New University of Washington research shows that rising sea surface temperatures in the area of the Pacific Ocean along the equator and near the International Date Line drive atmospheric circulation that has caused some of the largest shifts in Antarctic climate in recent decades.

The warmer water generates rising air that creates a large wave structure in the atmosphere called a Rossby wave train, which brings warmer temperatures to West Antarctica during winter and spring.

Antarctica is somewhat isolated by the vast Southern Ocean, but the new results "show that it is still affected by climate changes elsewhere on the planet," said Eric Steig, a UW professor of Earth and space sciences and director of the UW Quaternary Research Center.

Steig is the corresponding author of a paper documenting the findings that is being published April 10 in the journal Nature Geoscience. The lead author is Qinghua Ding, a postdoctoral researcher in the UW Quaternary Research Center. Co-authors are David Battisti, a UW atmospheric sciences professor, and Marcel Küttel, a former UW postdoctoral researcher now working in Switzerland.

The scientists used surface and satellite temperature observations to show a strong statistical connection between warmer temperatures in Antarctica, largely brought by westerly winds associated with high pressure over the Amundsen Sea adjacent to West Antarctica, and sea surface temperatures in the central tropical Pacific Ocean.

They found a strong relationship between central Pacific sea-surface readings and Antarctic temperatures during winter months, June through August. Though not as pronounced, the effect also appeared in the spring months of September through November.

The observed circulation changes are in the form of a series of high- and low-pressure cells that follow an arcing path from the tropical Pacific to West Antarctica. That is characteristic of a textbook Rossby wave train pattern, Ding said, and the same pattern is consistently produced in climate models, at least during winter.

Using observed changes in tropical sea surface temperatures, the researchers found they could account for half to all of the observed winter temperature changes in West Antarctica, depending on which observations are used for comparison.

"This is distinct from El Niño," Steig said. That climate phenomenon, which affects weather patterns worldwide, primarily influences sea-surface temperatures farther east in the Pacific, nearer to South America. It can be, but isn't always, associated with strong warming in the central Pacific.

Steig noted that the influence of Rossby waves on West Antarctic climate is not a new idea, but this is the first time such waves have been shown to be associated with long-term changes in Antarctic temperature.

The findings also could have implications for understanding the causes behind the thinning of the West Antarctic Ice Sheet, which contains about 10 percent of all the ice in Antarctica.

Steig noted that the westerly winds created by the high pressure over the Amundsen Sea pushes cold water away from the edge of the ice sheet and out into the open ocean. It is then replaced by warmer water from deeper in the ocean, which is melting the seaward edge of the ice sheet from below.

The work was funded by the National Science Foundation.

For more information, contact Steig at 206-685-3715 or steig@uw.edu.

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>