Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welcome Committee for Comets

19.07.2019

The mission "Comet Interceptor" will visit a pristine comet that is just beginning its journey into the inner solar system. From the beginning, the Technische Universität Braunschweig with the Institute of Geophysics and Extraterrestrial Physics has also been involved in the mission. The goal of the European Space Agency (ESA) is to better understand the development of dynamic objects.

Three spacecraft will intercept a pristine comet or a previously unknown interstellar object that is about to enter the inner solar system. The spacecraft observe several points around the comet simultaneously.


SOSMAG-Magnetometer sensor of TU Braunschweig in a test programme. It is the design template for a new instrument to be integrated in "Comet Interceptor" mission in 2028.

Credits: IGeP/TU Braunschweig


Concept of the „Comet Interceptor" mission

Credits: ESA

From this data, they create a 3D profile of a new, dynamic object and its environment. The comet contains untouched material that has been preserved since the beginning of the solar system and has not been altered by the heat of the sun.

"Comet Interceptor" builds on the scientific achievements of the two completed comet missions "Giotto" and "Rosetta", in which the TU Braunschweig was also involved. The Institute for Geophysics and Extraterrestrial Physics (IGeP) is once again contributing a magnetometer sensor.

The aim is to measure the magnetic fields in the vicinity of the new comet in order to understand, for example, how the plasma behaves at the comet. "The Rosetta mission was a good foundation for our science and showed us which scientific questions we cannot answer yet.

It has not yet been clarified how the diamagnetic cavity is formed. And this is exactly where 'Comet Interceptor' should help," says Dr. Charlotte Götz, scientist at the Institute of Geophysics and Extraterrestrial Physics.

The Mission

"Comet Interceptor" is scheduled to launch in 2028 with the "Ariel" mission, which will take it to near-Earth space. The composite spacecraft will be positioned at the Sun-Earth Lagrange Point L2, which is 1.5 million kilometres "behind" the Earth as seen from the Sun. There the spaceship waits for a suitable target and then travels together towards the comet before the three modules separate a few weeks before the comet is intercepted. Each module will be equipped with a complementary scientific payload offering different perspectives on the comet's nucleus and its gas, dust and plasma environment. These "multi-point" measurements are needed to analyze the dynamic nature of the object as it interacts with the ever-changing solar wind environment.

Weather Forecast from Satellites for Satellites

What is new about the mission is that, for the first time, researchers can measure at several points: Two more satellites will also be equipped with magnetometers from Japan and Great Britain. "Since the plasma at the comet consists of water ions and the ions of the solar wind, it is important to get a kind of weather forecast," says Dr. Götz. This is provided by one of the three satellites, while the other two observe the reaction of the plasma.

"Comet Interceptor" was selected as ESA's new fast mission under the Cosmic Vision programme. The IGeP has written parts of the proposal, on the basis of which the mission has now been selected. A special feature of the mission is that it has to be prepared comparatively quickly, because the launch is planned for 2028 – in space travel, the lead times for planned projects are usually much longer. "This means that all instruments must be off the shelf. We recently developed a magnetometer that can be rebuilt without major design changes," says Dr. Götz about the so-called Fast or F-Class mission. The "fast" refers to the implementation time, with a total development time from selection to launch of about eight years.

Wissenschaftliche Ansprechpartner:

Dr. Charlotte Götz
Technische Universität Braunschweig
Institute of Geophysics and Extraterrestrial Physics
Mendelssohnstraße 3
38106 Braunschweig
Phone: +49 531 391-5221
E-Mail: c.goetz@tu-bs.de
www.igep.tu-bs.de

Prof. Dr. Karl-Heinz Glaßmeier ML
Technische Universität Braunschweig
Institute of Geophysics and Extraterrestrial Physics
Mendelssohnstraße 3
38106 Braunschweig
Phone: +49 531 391-5214
E-Mail: kh.glassmeier@tu-braunschweig.de

Dr. Hans-Ulrich Auster
Technische Universität Braunschweig
Institute of Geophysics and Extraterrestrial Physics
Mendelssohnstraße 3
38106 Braunschweig
Phone: +49 531 391-5241
E-Mail: uli.auster@tu-braunschweig.de

Weitere Informationen:

https://magazin.tu-braunschweig.de/pi-post/begruessungskomitee-fuer-kometen/
https://magazin.tu-braunschweig.de/pi-post/braunschweiger-wissenschaftler-entdec...
http://www.cometinterceptor.space/

Janos Krüger | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht New insight into glaciers regulating global silicon cycling
14.08.2019 | University of Bristol

nachricht Coastal marine sediments contribute to the formation of greenhouse gases
31.07.2019 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>