Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water-rock reaction may provide enough hydrogen 'food' to sustain life in ocean's crust or on Mars

31.05.2013
A chemical reaction between iron-containing minerals and water may produce enough hydrogen "food" to sustain microbial communities living in pores and cracks within the enormous volume of rock below the ocean floor and parts of the continents, according to a new study led by the University of Colorado Boulder.

The findings, published in the journal Nature Geoscience, also hint at the possibility that hydrogen-dependent life could have existed where iron-rich igneous rocks on Mars were once in contact with water.

Scientists have thoroughly investigated how rock-water reactions can produce hydrogen in places where the temperatures are far too hot for living things to survive, such as in the rocks that underlie hydrothermal vent systems on the floor of the Atlantic Ocean. The hydrogen gases produced in those rocks do eventually feed microbial life, but the communities are located only in small, cooler oases where the vent fluids mix with seawater.

The new study, led by CU-Boulder Research Associate Lisa Mayhew, set out to investigate whether hydrogen-producing reactions also could take place in the much more abundant rocks that are infiltrated with water at temperatures cool enough for life to survive.

"Water-rock reactions that produce hydrogen gas are thought to have been one of the earliest sources of energy for life on Earth," said Mayhew, who worked on the study as a doctoral student in CU-Boulder Associate Professor Alexis Templeton's lab in the Department of Geological Sciences.

"However, we know very little about the possibility that hydrogen will be produced from these reactions when the temperatures are low enough that life can survive. If these reactions could make enough hydrogen at these low temperatures, then microorganisms might be able to live in the rocks where this reaction occurs, which could potentially be a huge subsurface microbial habitat for hydrogen-utilizing life."

When igneous rocks, which form when magma slowly cools deep within the Earth, are infiltrated by ocean water, some of the minerals release unstable atoms of iron into the water. At high temperatures — warmer than 392 degrees Fahrenheit — scientists know that the unstable atoms, known as reduced iron, can rapidly split water molecules and produce hydrogen gas, as well as new minerals containing iron in the more stable, oxidized form.

Mayhew and her co-authors, including Templeton, submerged rocks in water in the absence of oxygen to determine if a similar reaction would take place at much lower temperatures, between 122 and 212 degrees Fahrenheit. The researchers found that the rocks did create hydrogen — potentially enough hydrogen to support life.

To understand in more detail the chemical reactions that produced the hydrogen in the lab experiments, the researchers used "synchrotron radiation" — which is created by electrons orbiting in a manmade storage ring — to determine the type and location of iron in the rocks on a microscale.

The researchers expected to find that the reduced iron in minerals like olivine had converted to the more stable oxidized state, just as occurs at higher temperatures. But when they conducted their analyses at the Stanford Synchrotron Radiation Lightsource at Stanford University, they were surprised to find newly formed oxidized iron on "spinel" minerals found in the rocks. Spinels are minerals with a cubic structure that are highly conductive.

Finding oxidized iron on the spinels led the team to hypothesize that, at low temperatures, the conductive spinels were helping facilitate the exchange of electrons between reduced iron and water, a process that is necessary for the iron to split the water molecules and create the hydrogen gas.

"After observing the formation of oxidized iron on spinels, we realized there was a strong correlation between the amount of hydrogen produced and the volume percent of spinel phases in the reaction materials," Mayhew said. "Generally, the more spinels, the more hydrogen."

Not only is there a potentially large volume of rock on Earth that may undergo these low temperature reactions, but the same types of rocks also are prevalent on Mars, Mayhew said. Minerals that form as a result of the water-rock reactions on Earth have been detected on Mars as well, which means that the process described in the new study may have implications for potential Martian microbial habitats.

Mayhew and Templeton are already building on this study with their co-authors, including Thomas McCollom at CU-Boulder's Laboratory for Atmospheric and Space Physics, to see if the hydrogen-producing reactions can actually sustain microbes in the lab.

This study was funded by the David and Lucille Packard Foundation and with a U.S. Department of Energy Early Career grant to Templeton.

Lisa Mayhew | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>