Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water in mantle may be associated with subduction

21.08.2009
A team of scientists from Oregon State University has created the first global three-dimensional map of electrical conductivity in the Earth's mantle and their model suggests that that enhanced conductivity in certain areas of the mantle may signal the presence of water.

What is most notable, the scientists say, is those areas of high conductivity coincide with subduction zones – where tectonic plates are being subducted beneath the Earth's crust. Subducting plates are comparatively colder than surrounding mantle materials and thus should be less conductive. The answer, the researchers suggest, may be that conductivity in those areas is enhanced by water drawn downward during the subduction process.

Results of their study are being published this week in Nature.

"Many earth scientists have thought that tectonic plates are not likely to carry much if any water deep into the Earth's mantle when they are being subducted," said Adam Schultz, a professor in the College of Oceanic and Atmospheric Sciences at Oregon State and a co-author on the Nature study. "Most evidence suggests that subducting rocks initially hold water within their minerals, but that water is released as the rocks heat up."

"There may be other explanations," he added, "but the model clearly shows a close association between subduction zones and high conductivity and the simplest explanation is water."

The study is important because it provides new insights into the fundamental ways in which the planet works. Despite all of the advances in technology, scientists are still unsure how much water lies beneath the ocean floor – and how much of it makes its way into the mantle.

The implications are myriad. Water interacts with minerals differently at different depths, and small amounts of water can change the physical properties of rocks, alter the viscosity of materials in the mantle, assist in the formation of rising plumes of melted rock and ultimately affect what comes out on the surface.

"In fact, we don't really know how much water there is on Earth," said Gary Egbert, also a professor of oceanography at OSU and co-author on the study. "There is some evidence that there is many times more water below the ocean floor than there is in all the oceans of the world combined. Our results may shed some light on this question."

Egbert cautioned that there are other explanations for higher conductivity in the mantle, including elevated iron content or carbon.

There also may be different explanations for how the water – if indeed the conductivity is reflecting water – got there in the first place, the scientists point out.

"If it isn't being subducted down with the plates," Schultz said, "how did it get there? Is it primordial, down there for four billion years? Or did it indeed come down as the plates slowly subduct, suggesting that the planet may have been much wetter a long time ago? These are fascinating questions, for which we do not yet have answers."

The scientists conducted their study using electromagnetic induction sounding of the Earth's mantle. This electromagnetic imaging method is very sensitive to interconnecting pockets of fluid that may be found within rocks and minerals that enhance conductivity. Using magnetic observations from more than 100 observatories dating back to the 1980s, they were able to create a global three-dimensional map of mantle conductivity.

Anna Kelbert, a post-doctoral research associate at OSU and lead author on the paper, said the imaging doesn't show the water itself, but the level of conductivity and interpreting levels of hydrogen, iron or carbon require additional constraints from mineral physics. She described the study of electrical conductivity as both computationally intensive and requiring years of careful measurements in the international observatories.

"The deeper you want to look into the mantle," Kelbert said, "the longer periods you have to use. This study has required magnetic field recordings collected over decades."

The scientists say the next step is to replicate the experiment with newly available data from both ground observatories and satellites, and then conduct more research to better understand the water cycle and how the interaction with deep-Earth minerals works. Their work is supported by the National Science Foundation and NASA to take the next steps in this research program.

Ultimately, they hope to produce a model quantifying how much water may be in the mantle, locked up within the mineral-bearing rocks.

Adam Schultz | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht 558 million-year-old fat reveals earliest known animal
21.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Glacial engineering could limit sea-level rise, if we get our emissions under control
20.09.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>